Summary

Proceedings of the 2013 International Symposium on Nonlinear Theory and its Applications

2013

Session Number:C2L-D

Session:

Number:421

A Nonlinear Circuit Network Toward Brain Voxel Modeling

Takashi Matsubara,  Hiroyuki Torikai,  Tetuya Shimokawa,  Kenji Leibnitz,  Ferdinand Peper,  

pp.421-424

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.2.421

PDF download (573.9KB)

Summary:
This paper presents a nonlinear dynamical model for predicting activities of voxels in a human primary visual cortex (V1); the activities are represented by blood-oxygen-level-dependent (BOLD) signals. The prediction performance is shown to be better than those of other traditional major models, e.g., general linear model and multivariable autoregressive model.

References:

[1] R. B. Tootell et al., “Functional analysis of primary visual cortex (V1) in humans.” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 811-7, 1998.

[2] W. Chen et al., “Mapping of lateral geniculate nucleus activation during visual stimulation in human brain using fMRI.” Magnetic Resonance in Medicine, vol. 39, no. 1, pp. 89-96, 1998.

[3] K. A. Schneider, M. C. Richter, and S. Kastner, “Retinotopic organization and functional subdi-visions of the human lateral geniculate nucleus: a high-resolution functional magnetic resonance imaging study.” The Journal of Neuroscience, vol. 24, no. 41, pp. 8975-85, 2004.

[4] K. A. Schneider and S. Kastner, “Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study.” Journal of Neurophysiology, vol. 94, no. 4, pp. 2491-503, 2005.

[5] D. Bressler, N. Spotswood, and D. Whitney, “Negative BOLD fMRI response in the visual cortex carries precise stimulus-specific information.” PloS ONE, vol. 2, no. 5, p. e410, 2007.

[6] K. Friston, A. Holmes, and J. Poline, “Analysis of fMRI time-series revisited,” NeuroImage, vol. 2, no. 1, pp. 45-53, 1995.

[7] R. Goebel et al., “Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping,” Magnetic Resonance Imaging, vol. 21, no. 10, pp. 1251-1261, 2003.

[8] A. Roebroeck, E. Formisano, and R. Goebel, “Mapping directed influence over the brain using Granger causality and fMRI.” NeuroImage, vol. 25, no. 1, pp. 230-42, 2005.

[9] D. Marinazzo et al., “Nonlinear connectivity by Granger causality.” NeuroImage, vol. 58, no. 2, pp. 330-8, 2011.

[10] K. Friston, L. Harrison, andW. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273-1302, 2003.

[11] S. M. Smith et al., “Network modelling methods for FMRI.” NeuroImage, vol. 54, no. 2, pp. 875-91, 2011.

[12] J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. Thieme, 1988.

[13] J. L. Lancaster et al., “Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template.” Human Brain Mapping, vol. 28, no. 11, pp. 1194-205, 2007.

[14] “talairach.org.” url: http://www.talairach.org/

[15] J. L. Lancaster et al., “Automated Talairach atlas labels for functional brain mapping.” Human Brain Mapping, vol. 10, no. 3, pp. 120-31, 2000.