Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B4L-B

Session:

Number:482

Emerging scales and dynamics from adaptively networked systems

Massimiliano Zanin,  Ricardo Gutierrez,  David Papo,  Stefano Boccaletti,  

pp.482-484

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.482

PDF download (954.2KB)

Summary:
We present a model for the emergence of three important features found in many social and biological systems, and especially in neural networks: modular structures, scale-free distribution of connections strengths, and computational capability. All such features naturally emerge from the interaction of different oscillators, and from the synchronization between their dynamics. Our results are of relevance in enlightening possible biological mechanisms at the basis of the processing and integration of information across distributed neural systems.

References:

[1] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou, “The synchronization of chaotic systems,” Phys. Rep., vol.366, 2002.

[2] L. M. Pecora, T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., vol.64, 1990.

[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, “Complex networks: Structure and dynamics,” Phys. Rep., vol.424, 2006.

[4] R. Gutiérrez, A. Amann, S. Assenza, J. Gómez-Gardeñes, V. Latora, S. Boccaletti, “Emerging Meso- and Macroscales from Synchronization of Adaptive Networks”, Phys. Rev. Lett., vol.107, 2011.

[5] S. Assenza, R. Gutiérrez, J. Gómez-Gardeñes, V. Latora, S. Boccaletti, “Emergence of structural patterns out of synchronization in networks with competitive interactions”, Sci. Rep., vol.1, 2011.

[6] M. Zanin, D. Papo, I. Sendiña-Nadal, S. Boccaletti, “Computation as an emergent feature of adaptive synchronization,” Phys. Rev. E, vol.84, 2011.

[7] M. Zanin, F. del Pozo, S. Boccaletti, “Computation Emerges from Adaptive Synchronization of Networking Neurons,” Phys. Rev. E, vol.6, 2011.

[8] Y. Kuramoto, “Chemical Oscillations, Waves and Turbulence,” Springer, New York, 1984.

[9] K. J. Friston, “The labile brain. I. Neuronal transients and nonlinear coupling,” Phil. Trans. Roy. Soc. Lon. B, vol.355, 2000.

[10] M. Breakspear, L. M. Williams and C. J. Stam, “A novel method for the topographic analysis of neural activity reveals formation and dissolution of ’dynamic cell assemblies’,” J. Comput. Neurosci., vol.16, 2004.

[11] J. Benda, A. Longtin and L. Maler, “A synchronization-desynchronization code for natural communication signals,” Neuron, vol.52, 2006.