Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B3L-B

Session:

Number:423

Effects of a defect and drift on dissipative solitons

P. Parra,  D. Gomila,  M.A. Matías,  P. Colet,  

pp.423-426

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.423

PDF download (351KB)

Summary:
We consider dissipative solitons arising in the Swift-Hohenberg equation and study the effects of adding a pinning defect and drift. The competition between the pinning of dissipative solitons to the defect and the pulling of the drift term give rise to complex dynamical behaviour. In particular we show that dissipative solitons display excitability by a number of different mechanisms.

References:

[1] S. Koga and Y. Kuramoto, Prog. Theor. Phys. 63, 106 (1980)

[2] B. S. Kerner and V. V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (Kluwer, Dordrecht, 1994).

[3] V. K. Vanag and I. R. Epstein, Chaos 17, 037110 (2007).

[4] F. J. Niedernostheide, B. S. Kerner, and H. G. Purwins, Phys. Rev. B 46, 7559 (1992).

[5] P. B. Umbanhowar, F. Melo, and H. L. Swinney, Nature (London) 382, 793 (1996).

[6] J. J. Niemela, G. Ahlers, and D. S. Cannell, Phys. Rev. Lett. 64, 1365 (1990).

[7] O. Batiste and E. Knobloch, Phys. Rev. Lett. 95, 244501 (2005).

[8] O. Lejeune, M. Tlidi, and P. Couteron, Phys. Rev. E 66, 010901(R) (2002).

[9] W. J. Firth and C. O. Weiss, Opt. Photonics News 13, 55 (2002).

[10] Feature Section on Cavity Solitons, edited by L. A. Lugiato, IEEE J. Quant. Elect. 39, 2 (2003).

[11] N. N. Rosanov, Spatial Hysteresis and Optical Patterns, Springer Series in Synergetics (Springer, Berlin, 2002).

[12] S. Barland et al., Nature (London) 419, 699 (2002).

[13] Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jger, Phys. Rev. Lett. 100, 013907 (2008).

[14] P. Coullet, C. Riera, and C. Tresser, Chaos 14, 193 (2004).

[15] W. J. Firth, A. Lord, and A. J. Scroggie, Phys. Scr., T67, 12 (1996); W. J. Firth, G. K. Harkness, A. Lord, J. McSloy, D. Gomila, and P. Colet, J. Opt. Soc. Am. B 19, 747 (2002).

[16] V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 92, 128301 (2004).

[17] D. Gomila, M. A. Matías, and P. Colet, Phys. Rev. Lett. 94, 063905 (2005); D. Gomila, A. Jacobo, M. A. Matías, and P. Colet, Phys. Rev. E 75, 026217 (2007).

[18] A. Jacobo, D. Gomila, M. A. Matías, and P. Colet, Phys. Rev. A 78, 053821 (2008); New J. Physics 14, 013040 (2012).

[19] A. Winfree, The Geometry of Biological Time 2nd edn (Springer, New York, 2001).

[20] P. Woods and A. Champneys, Physica D 129, 147 (1999).

[21] E. Caboche, et al., Phys. Rev. Lett. 102 163901 (2009).

[22] R. Montagne, E. Hernández-García, A. Amengual, and M. San Miguel, Phys.Rev.E 56,151 (1997).

[23] J. M. McSloy,W.J.Firth, G. K. Harkness, and G. L. Oppo, Phys.Rev.E 66,046606 (2002).

[24] E. M. Izhikevich, Dynamical Systems in Neuro-science: the geometry of excitability and bursting, (The MIT Press, Cambridge, Massachusetts, 2007)