Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B3L-A

Session:

Number:411

Simplified models for Intrinsic Localized Mode dynamics

Daniel Brake,  Vakhtang Putkaradze,  

pp.411-414

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.411

PDF download (525.9KB)

Summary:
We discuss possible application of Intrinsic Localized Modes (ILM) in nano pillar arrays to sensing. When a molecule attaches to a pillar, it causes a change in the pillar's natural frequency. The idea of the method is to use ILMs to detect this defect in the array. We outline some difficulties posed by visualization of nanoscale vibrations. As a first step in theoretical understanding of ILM dynamics in the presence of defects, we use variational models to derive simplified equations of motion for ILMs.

References:

[1] A. J. Sievers and S. Takeno, “Intrinsic localized modes in anharmonic crystals,” Phys. Rev. Lett., vol. 61, no. 8, pp. 970-973, Aug 1988.

[2] J. B. Page, “Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems,” Phys. Rev. B, vol. 41, no. 11, pp. 7835-7838, Apr 1990.

[3] G. Huang, Z. Shi, and Z. Xu, “Assymetric intrinsic localized modes in a homogeneous lattice with cubic and quartic anhamonicity,” Physical Review B, vol. 47, no. 21, June 1993.

[4] M. Sato, B. E. Hubbard, L. Q. English, A. J. Sievers, B. Ilic, D. A. Czaplewski, and H. G. Craighead, “Study of intrinsic localized vibrational modes in micromechanical oscillator arrays,” Chaos, vol. 13, no. 2, p. 702, May 2003.

[5] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski, and H. G. Craighead, “Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array,” Phys. Rev. Lett., vol. 90, no. 4, p. 044102, Jan 2003.

[6] M. Sato, B. E. Hubbard, and A. J. Sievers, “Colloquium: Nonlinear energy localization and its manipulation in micromechanical oscillator arrays,” Rev. Mod. Phys., vol. 78, no. 1, pp. 137-157, Jan 2006.

[7] M. Sato and A. J. Sievers, “Visualizing intrinsic localized modes with a nonlinear micromechanical array,” Low Temperature Physics, vol. 34, no. 7, pp. 543-548, 2008.

[8] M. Kimura and T. Hikihara, “Capture and release of traveling intrinsic localized mode in coupled cantilever array,” Chaos, vol. 19, no. 1, p. 13138, 2009.

[9] ——, “Coupled cantilever array with tunable onsite nonlinearity and observation of localized oscillations,” Physics Letters A, vol. 373, no. 14, pp. 1257 -1260, 2009.

[10] P. Kevrekidis, A. Bishop, and K. O. Rasmussen, “Twisted localized modes,” Physical Review E., vol. 63, no. 3, 2001.

[11] P. G. Kevrekidis and V. V. Konotop, “Bright compact breathers,” Phys. Rev. E, vol. 65, no. 6, p. 066614, Jun 2002.

[12] T. Thundat, G. Y. Chen, R. J. Wannack, D. P. Allison, and E. A. Wachter, “Vapor detection using resonating microcantilevers,” Anal. Chem, vol. 67, pp. 519-521, 1995.

[13] C. Hierold, “From micro- to nanosystems: mechanical sensors go nano,” J. Micromech. Engr., vol. 14, pp. S1-S11, 2004.

[14] R. Mukhopadhyay, V. V. Sumbayev, M. Lorentzen, J. Kjems, P. A. Andreasen, and F. Besenbacher, “Cantilever sensor for nanomechanical detection of specific protein conformations,” Nano Lett., vol. 5, pp. 2385-2388, 2005.

[15] K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instruments, vol. 76, p. 061101, 2005.

[16] L. Fischer, V. A. Wright, C. Guthy, N. Yang, M. T. McDermott, J. Buriakb, and S. Evoy, “Specific detection of proteins using nanomechanical resonators,” Sensors and Actuators B: Chemical, vol. 134, p. 613617, 2008.

[17] L. Carrascosa, M. Moreno, M. Alvarez, and L. Lechuga, “Nanomechanical biosensors: a new sensing tool,” Trends in Anal. Chem., vol. 25, pp. 196-206, 2006.

[18] J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Perez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” AppliedPhysicsLet-ters, vol. 91, no. 1, p. 013501, 2007.

[19] X. L. Feng, R. He, P. Yang, and M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett., vol. 7, pp. 1953-1959, 2007.

[20] M. Belov, N. J. Quitoriano, S. Sharma, W. K. Hiebert, T. I. Kamins, , and S. Evoy, “Mechanical resonance of clamped silicon nanowires measured by optical interferometry,” J. Applied Physics, vol. 103, p. 074304, 2008.

[21] K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech., vol. 3, pp. 533-537, 2008.

[22] E. Gil-Santos, D. Ramos, J. Martinez, M. Fernandez-Regulez, R. Garca, A. S. Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nano Lett., vol. 5, pp. 641-645, 2010.

[23] J. Pepper, R. Noring, M. Klempner, B. Cunninghama, A. Petrovich, R. Bousquet, C. Clapp, J. Brady, and B. Hugha, “Detection of proteins and intact microorganisms using microfabricated flexural plate silicon resonator arrays,” Sensors and Actuators B: Chemical, vol. 96, pp. 565-575, 2003.

[24] D. Brake, H. Xu, A. Hollowell, G. Balakrishnan, C. Hains, E. Malm, M. Marconi, and V. Putkaradze, “Intrinsic localized modes in two-dimensional vibrations of crystalline pillars and their application for sensing,” Applied Physics Express, under consideration, 2012.

[25] B. A. M. Valeriy A. Brazhnyi, “Localization and delocalization of two-dimensional discrete solitons pinned to linear and nonlinear defects,” Phys. Rev. E, vol. 83, p. 016604, 2011.