Summary

Proceedings of the 2012 International Symposium on Nonlinear Theory and its Applications

2012

Session Number:B1L-D

Session:

Number:336

Secure key distribution using correlated randomness in optical devices

Kazuyuki Yoshimura,  Jun Muramatsu,  Peter Davis,  Atsushi Uchida,  Takahisa Harayama,  

pp.336-339

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.1.336

PDF download (318.1KB)

Summary:
We propose a secure key distribution scheme based on correlated physical randomness in remote optical scramblers driven by common broadband random light. Moreover, we propose a particular realization of the scheme using synchronization of semiconductor lasers injected with common broadband random light.

References:

[1] C. H. Bennett and G. Brassard, ”Quantum cryptography: Public key distribution and coin tossing,” Proc. of the IEEE Int. Conf. on Comp. Syst. and Sig. Process., pp.175-179 (1984).

[2] J. Scheuer and A. Yariv, ”Giant fiber lasers: a new paradigm for secure key distribution,” Phys. Rev. Lett., vol.97, 140502, 2006.

[3] R. Vicente, C. R. Mirasso, and I. Fischer, ”Simultaneous bidirectional message transmission in a chaos-based communication scheme,” Opt. Lett., vol.32, pp.403-405, 2007.

[4] I. Kanter, M. Butkovski, Y. Peleg, M. Zigzag, Y. Aviad, I. Reidler, M. Rosenbluh, and W. Kinzel, ”Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography,” Optics Express, vol.18, pp.18292-18302, 2010.

[5] G. S. Kanter and P. Kumar, ”Fibre lasers: keeping cryptographic keys safe,” Nature Photonics, vol.1, pp.15-16, 2007.

[6] U. M. Maurer, ”Secret key agreement by public discussion from common information,” IEEE Trans. Inform. Theory, vol.39, pp.733-742, 1993.

[7] J. Muramatsu, K. Yoshimura, and P. Davis, ”Information theoretic security based on bounded observability,” Lecture Notes in Computer Science, vol.5973, pp.128-139, 2010.

[8] K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, ”Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett., vol.108, 070602, 2012.

[9] T. Yamamoto, I. Oowada, H. Yip, A. Uchida, S. Yoshimori, K. Yoshimura, J. Muramatsu, Shin-itiro Goto, and P. Davis, Optics Express 15, 3979 (2007).

[10] I. Oowada, H. Ariizumi, M. Li, S. Yoshimori, A, Uchida, K. Yoshimura, and P. Davis, ”Synchronization by injection of common chaotic signal in semiconductor lasers with optical feedback,” Optics Express, vol.17, pp.10025-10034, 2009.

[11] S. Goto, P. Davis, K. Yoshimura, and A. Uchida, ”Synchronization of chaotic semiconductor lasers by optical injection with random phase modulation,” Optical and Quantum Electronics, vol.41, pp.137-149, 2009.

[12] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, ”Generalized privacy amplification,” IEEE Trans. Inform. Theory, vol.41, pp.1915-1923, 1995.

[13] In practice, there may be some errors between retained bits of Alice and Bob. To eliminate the errors, Alice and Bob need to perform a form of error correction, known as ”information reconciliation” [14, 15] through an authenticated public channel, before the privacy amplification.

[14] G. Brassard and L. Salvail, ”Secret-key reconciliation by public discussion,” Lecture Notes in Computer Science, vol.765, pp.410-423, 1994.

[15] J. Muramatsu, K. Yoshimura,K. Arai, and P. Davis, ”Some results on secret key agreement using correlated sources,” NTT Technical Review, vol.6, no.2, 2008.

[16] R. Lang and K. Kobayashi, ”External optical feedback effects on semiconductor injection properties,” IEEE J. Quantum Electron., vo.16, pp.347-355, 1980.

[17] A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, ”Fast physical random bit generation with chaotic semiconductor lasers,” Nature Photonics, vol.2, pp.728-732, 2008.

[18] A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, ”Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Optics Express, vol.18, pp.18763-18768, 2010.

[19] T. Harayama, S. Sunada, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, ”Fast nondeterministic random-bit generation using on-chip chaos lasers,” Phys Rev. A, vol.83, 031803, 2011.

[20] A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, ”Photonic Integrated Device for Chaos Applications in Communications,” Phys Rev. Lett., vol.100, 194101, 2008.