Summary

Proceedings of the 2013 International Symposium on Nonlinear Theory and its Applications

2013

Session Number:A3L-D

Session:

Number:118

Non-Uniform Arrays of bi-SQUIDs

Patrick Longhini,  Visarath In,  Antonio Palacios,  Susan Berggren,  Oleg A. Mukhanov,  Georgy Prokopenko,  Anna Leese de Escobar,  Benjamin Taylor,  Marcio C. De Andrade,  Martin Nisenoff,  

pp.118-121

Publication Date:

Online ISSN:2188-5079

DOI:10.15248/proc.2.118

PDF download (645.4KB)

Summary:
Multi-loop arrays of Josephson Junctions (JJ) with non-uniform area distributions, which are known as Superconducting Quantum Interference Filters (SQIF), are the most highly sensitive sensors of changes in applied magnetic field as well as the absolute magnitude of magnetic fields. The non-uniformity in the loop inductances allows the array to produce a unique collective voltage response that has a pronounced single peak with a large voltage swing around zero magnetic field. To obtain high linear dynamic range, which is critical for a wide variety of applications, the linearity of the slope of the anti-peak response must be improved. We propose a novel scheme for enhancing linearity - a new configuration combining the SQIF array concept with the recently introduced bi-SQUID configuration, in which each individual SQUID loop is made up of three JJs as opposed to using two JJs per loop in standard dc SQUIDs. The anti-peak linearity and size can be optimized by varying the critical current that circulates through the additional junction of each bi-SQUID. We show, computationally, that the additional junction offers a viable linearization method for optimizing the voltage response and dynamic range of SQIF arrays. We have realized the SQIF arrays based on bi-SQUID cells and present experimental results which verify the numerical results.

References:

[1] R. L . Fagaly, Rev. Sci. Instrum. 77, 101101 (2006).

[2] L. E. Fong, J. R. Holzer, et al. Rev. Sci. Instrum. 76, 053703 (2005).

[3] O. Hahneiser, S. Kohlsmann, et al. Bioelectrochem. Bioenerg., 37, 51, (1995).

[4] Y. Machitani, N. Kasai, et al. IEEE Trans. Appl. Supercond. 13 763, (2003).

[5] P. Schmidt, D. Clark, et al. Explor. Geophys., 35, 297 (2004).

[6] Andreas Chwala, Ronny Stolz, et al. SEG Expanded Abstracts 29, 779 (2010).

[7] D.G. Aronson, M. Golubitsky, and M. Krupa, Nonlinearity 4 861, (1991).

[8] M. Inchiosa, A. Bulsara, K. Wiesenfeld, and L. Gammaitoni, Phys. Rev. Lett. A252, 20, (1999).

[9] A.R. Bulsara, V In, et al. Phys. Rev. E 70, 036103, (2004).

[10] J.A. Acebron and A.R. Bulsara and M.E. Inchiosa and W.J. Rappel, Europhys. Lett. 56 354, (2001).

[11] A. Palacios, J. Aven, P. Longhini, V. In, and A. Bulsara, Phys. Rev. E 74, 021122, (2006).

[12] K.G. Stawiasz and M.B. Ketchen, IEEE Trans. Appl. Supercond. 3, 1808, (1993).

[13] J. Oppenländer, Ch. Häussler, and N. Schopohl, Phys. Rev. B 63, 024511, (2001).

[14] Ch. Häussler, J. Oppenländer, and N. Schopohl, J. Appl. Phys. 89, 1875, (2001).

[15] J. Oppenländer, Ch. Häussler, et al. Physica C 368, 119, (2002).

[16] J. Oppenländer, Ch. Häussler, T. et al. IEEE Trans. Appl. Supercond. 13, 771, (2003).

[17] J. Oppenländer, T. Träuble, et al. IEEE Trans. Appl. Supercond. 11, 1271, (2001).

[18] J. Oppenländer,Ch. Häussler, et al. IEEE Trans. Appl. Supercond. 15, 936, (2005).

[19] V K Kornev, I I Soloviev, et al. Supercond. Sci. Technol. 22, 114011, (2009).

[20] Victor Kornev, Igor Soloviev, et al. Physica C 470, 886, (2010).

[21] V. K. Kornev, I. I. Soloviev, et al. IEEE Trans. Appl. Supercond. 19, 741, (2009).