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1. Introduction

Machine-learning-based traffic control techniques that do
not require prior knowledge of the internal state of the net-
work have been actively studied. Sacco et al. [1] proposed
Owl, a window flow control method that uses Q-learning, a
type of reinforcement learning. In Owl, each sending host
performs Q-learning with the current window size, round-
trip time, etc. as the state and the amount of window size
change as the action. Each sending host updates the Q-value
corresponding to (state, action) based on the throughput and
packet loss rate resulting from the window size change.

Owl, a window flow control scheme based on rein-
forcement learning, changes the window size additively
(i.e., addition and subtraction) as an action of the sending
host. Conventional window flow control schemes, such as
TCP NewReno, use Additive-Increase and Multiplicative-
Decrease (AIMD) type window size adjustment. We believe
that AIMD-type window size adjustment is also effective in
window flow control schemes using reinforcement learning.

This study proposes Q-learning-based AIMD window
flow control (Q-AIMD) to change the congestion window
in an AIMD fashion and clarifies its effectiveness through
experiments. Specifically, the state of Q-learning in the
conventional Owl method is limited to the window size,
throughput, and packet loss rate, and the action of Q-
learning is given by the addition and multiplication of win-
dow sizes. Furthermore, through simulations, we show that
Q-AIMD performs well when two flows compete in a dumb-
bell topology.

2. Q-AIMD

Q-AIMD is a window flow control scheme that operates on
the sending host of the TCP transport protocol. It determines
the number of packets (i.e., window size) that can be sent out
into the network during the round-trip time by Q-learning.
Although the basic idea of Q-AIMD is based on Owl [1],
the action in Q-learning is different.

The sending host in Q-AIMD updates the Q-table at
intervals of ∆ and increases or decreases the window size
based on the current Q-table. The state s of each flow in Q-
AIMD is the window size, and the action a of each flow is of
two types: adding αn and multiplying by βn. αn and βn (n ≥
1) are control parameters. The action a in the conventional
Owl method only corresponds to the case with different αn.

Similar to Owl, Q-AIMD calculates the reward for the
current state and action pair (s, a) by measuring the current
throughput and the packet loss rate from the ACK returned
by the receiving host, and it updates the corresponding Q-
value in the Q-table. The reward r is given by the following
equation based on the measured throughput λ and packet
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Fig. 1 Q-AIMD simulation results

loss rate p[1].

r = λ − δ λ (1 − p)−1, (1)

where δ is a parameter that adjusts the weights of the
throughput and packet loss rate.

3. Simulation

In a dumbbell network consisting of two flows and a single
router running Q-AIMD, we measured the evolution of win-
dow sizes when two flows continuously send data to their
corresponding receiving hosts.

For both flows, the control interval was set to ∆ =
100 [ms]; round-trip propagation delay was set to 100 [ms];
minimum window size was set to 1 [packet]; and the pa-
rameters for changing the window size were set to α1 = 0,
α2 = 1, and β1 = 1/2. The learning rate for Q-learning was
set to 0.1, the discount rate was set to 0.1, and the weight of
the reward r was set to δ = 0.5. The router bandwidth was
set to 0.1 [packets/ms], and the buffer size was set to 100
[packets].

Figure 1 shows the evolution of the window sizes of
two flows running Q-AIMD and the queue length of the
router. These two figures show the temporal variation of the
window size and number of packets in the router’s buffer for
1,000–1,500 slots, where Q-learning is advanced to some
extent. This ensures that the window size of the two flows is
properly controlled by the Q-AIMD.
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