
2022 International Conference on Emerging Technologies for Communications (ICETC 2022)
1

An Implementation of Effective Server Resource Management
Scheme Using Deep Reinforcement Learning

Toshiki KAWAKITA†a), Nonmember, Kimihiro MIZUTANI† ,††, Satoru KOBAYASHI†††, Kensuke FUKUDA†††,
and Osamu AKASHI†††, Members1. Introduction

A container virtualization technology has been expanding
rapidly in recent years, which can construct multiple appli-
cation execution environments on a server. However, the
server computing resources are shared among containers,
and the performance of the containers may be degraded if
appropriate computing resources are not allocated in busy
case. In this study, to improve the performance degradation
of the running application, we dynamically changed the re-
source allocation of the container while the container was
running. In addition, we evaluate it on the real container
virtualization environment (i.e., Docker Environment [1])
while a past literature [2] evaluated it by simulation.
2. Proposed Scheme
In this study, we use Docker as a container virtualization
platform, and build multiple containers environment using
it. For realizing effective resource allocation for the con-
tainers, we adopt a reinforcement learning scheme. In the
reinforcement learning, a learning agent transits a state 𝑠𝑡+1
from a state 𝑠𝑡 by an action 𝑎𝑡 . Then, the learning agent
obtains the reward 𝑟𝑡 and adds the reward to value 𝑄(𝑠𝑡 , 𝑎𝑡 )
in each state noting that 𝑄(𝑠𝑡 , 𝑎𝑡 ) is zero in the initial state.
The learning agent finds the optimal action through the state
transitions for gaining the maximum reward in each state.
Here, we formulate the parameters of 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 . A state 𝑠𝑡
is an array of resource statuses of containers at time 𝑡. A
resource status of a container contains the allocated CPU
and memory. If a container can use up to 𝑁 CPU and
𝑀 gigabyte memory, the length of a resource status is as
𝑁 + 1, in detail, the 𝑖-th element (1 ≤ 𝑖 ≤ 𝑁) of a resource
status indicates 𝑖-th CPU is used (i.e., 1) or not (i.e., 0).
The last element is the normalized value of the allocated
memory between 0 and 1. For example, a resource status
[1, 0, 0, 0.5] indicates that a container is allocated the first
CPU and about half of the memory size against the memory
size limit noting that the second and third elements represent
other CPU resources. In addition, 𝑠𝑡 is an array of resource
statuses if multiple containers exist. An agent takes an ac-
tion 𝑎𝑡 for a state transition at time 𝑡. Through an action
𝑎𝑡 , the agent selects a target container and determines an ac-
tion from 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒/𝑑𝑒𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒/𝑘𝑒𝑒𝑝 for CPU or memory;
𝑘𝑒𝑒𝑝 indicates no action for the container and the memory

†Graduate School of Science and Engineering, Kindai Univer-
sity 3-4-1 Kowakae, Higashi Osaka, Osaka, Japan

††Cyber Informatics Research Institute, Kindai University, Same
location as Kindai University.
†††National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-

ku, Tokyo.
a) E-mail: 2233340448g@kindai.ac.jp

Fig. 1 The implementation of our proposed scheme.

allocation is executed on 512MB units. A reward 𝑟𝑡 is cal-
culated from the degree of performance improvement after
a resource allocation. Figure 1 shows the implementation
of our proposed scheme. When an agent takes an action 𝑎𝑡
in current state 𝑠𝑡 , the container resource is changed. Then,
the agent calculates the reward 𝑟𝑡 by measuring performance
improvement, and updates own 𝑄(𝑠𝑡 , 𝑎𝑡 ).
3. Evaluation and Conclusion
The proposed scheme is based on a deep reinforcement
learning algorithm implemented with OpenAI GYM [3] and
Chainer [4], which adopts 3 layer’s fully connected neural
network and took some learning parameters: discount factor
𝛾 and randomness value 𝜖 for action determination as 0.95
and 0.2. With this learning algorithm, our scheme controls
2 Docker containers with Docker API. Video streaming ap-
plications are launched in both containers and we loaded
the websites with Apache Benchmark which keeps 100 http
connections for the containers. For the reward calculation,
we use the reciprocal value of RTT (Round Trip Time) as the
degree of performance improvement. With these settings,
our proposed scheme adjusts the number of CPUs and the
amount of memory for improving RTT. After 1,000 epochs,
we confirmed that our scheme kept to gain higher reward
constantly and converged reward gain. As a result, we could
conclude our scheme can realize effective resource allocation
as the number of controlling becomes larger.
Acknowledgement
This work is partially supported by JSPS Kakenhi 20H04185.
References

[1] Docker, https://www.docker.com/
[2] Y. Xu et al, "A Survey on Resource Allocation for 5G Heterogeneous

Networks: Current Research, Future Trends, and Challenges," in
IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 668-
695, 2021.

[3] OpenAI Gym, https://gym.openai.com/
[4] Chainer, https://tutorials.chainer.org/ja/

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/




