
2022 International Conference on Emerging Technologies for Communications (ICETC 2022)
1

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers

Performance of Deeply Analyzing Application Switch

Satoshi ITO†a), non-Member, Akihiro NAKAO††, Masato OGUCHI††† Member, and Saneyasu YAMAGUCHI†,

Member

1. Introduction

Kanaya et al. have proposed a method of caching KVS(Key-

Value-Store) data in application switches to improve the

performance of Cassandra, which is a database management

system based on a key-value store, running on a network. In

the method, a developer implements a function for analyzing

Ethernet frames in an application switch. The switch

analyzes the frames, extracts query and response data, and

caches the data in the switch to improve the response

performance.

However, this existing method does not analyze lexically

and syntactically frames. It extracts information from the

data at fixed addresses in the frame payload. Therefore,

variable-length table names, key names, and values cannot

be analyzed. This means that a user must use columns and

column families with specified lengths. This issue can be

solved by implementing lexical and syntax analyzers in an

application switch. This paper evaluates the overheads of

these analyses on KVS performance and shows that our

implementation achieves the analysis with a very small

performance decline.

2. Analysis of Overhead

We have implemented a scanner and parser in the

application switch that can analyze Cassandra queries. This

enables the extraction of table names and other information

from queries composed of variable-length fields. We

evaluated the KVS performance of three methods, which are

the normal method, the existing method [1], and the existing

method with a scanner and parser. The normal method only

forwards frames based on the destination MAC address at

the switch. The key was selected according to the Zipf's law.

Fig. 1 shows the average turnaround times of 1024 queries

of the methods. In this experiment, the cache hit ratio was

37%. The "existing method + analysis" shows the results in

the case of cache miss including analytical overhead.

Comparing the results of "existing method (cache miss)" and

"existing method + analysis," we can see that the increase in

the turnaround time, which is the size of the performance

decline, caused by these analyses was not large. On the other

hand, the size of the decrease in turnaround time at the cache

hit of the existing method is large compared to the increase

caused by the analyses. Therefore, we expect that an

application switch with the analyses effectively improves

the KVS performance.

3. Conclusion

In this paper, we introduced a method for improving KVS

performance by implementing a caching function in an

application switch and its issue that it supported only fixed-

length fields. We argued that this issue could be solved by

implementing a scanner and parser, and that these analyses

caused processing overhead. We implemented an

application switch including these analyses and showed that

the overhead and the size of performance decline were not

large. This implies that an application switch can support

variable-length fields with a small overhead and it is a

promising way for improving the KVS performance.

Acknowledgments

This work was supported by JSPS KAKENHI Grant

Numbers 21K11854 and 21K11874.

References

[1] T. Kanaya, A. Nakao, S. Yamamoto, M. Oguchi, S.
Yamaguchi, "Intelligent Application Switch and Key-Value
Store Accelerated by Dynamic Caching," In Proceeding of
2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC 2020), DBDM 2020:
The 5th IEEE International Workshop on Distributed Big
Data Management, pp. 1318-1323, Jul. 2020.

 †The author is with Kogakuin University
 †† The author is with the University of Tokyo
 ††† The author is with Ochanomizu University
 a) E-mail: cm22009@ns.kogakuin.ac.jp

Fig. 1 KVS turnaround time

0

0.2

0.4

0.6

0.8

1

1.2

normal

method

existing

method

 (cache

miss)

existing

method

(cache hit)

existing

method +

analysis

tu
rn

 a
ro

u
n

d
 t

im
e
[m

s]

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

