
Analysis of Nonlinear Left-Handed Transmission

Lines Using State Space Modelling

Sameh Y. Elnaggar

School of Engineering and Information Technology

University of New South Wales

Canberra

Email: s.elnaggar@unsw.edu.au

G. N. Milford

School of Engineering and Information Technology

University of New South Wales

Canberra

Email: g.milford@adfa.edu.au

Abstract—In this paper we demonstrate the use of state
space modelling for analysing parametric generation in nonlinear
composite right left handed transmission lines. The system
natural frequencies are identified and found to be comparable
to the dominant poles of the linearized system. With an input

pump excitation, the structure generates parametric frequency
components, and the state space analysis suggests that the values
of the parametric frequencies are determined by the dominant
poles of the linearized system. The growth of the parametric
components depends on the net effect of the energy transfer
from the pump and the dissipative nature of the structure. It is
found that below a threshold value of the pump amplitude, the
parametric components are inhibited. This threshold value is a
function of the pump frequency and the structure losses. The nu-
merical calculations are in good agreement with measurements.
State space formulations allow the application of the mature
and robust techniques of systems and control methodologies to
analyse the behaviour of nonlinear right left handed transmission
line systems.

I. INTRODUCTION

Left-handed or Composite Right-Left handed transmission

lines (CRLH TL) have been extensively studied in the litera-

ture [1], [2]. Such structures were shown to have lower losses

and wider bandwidth than resonance based systems [1]. The

combination of left and right-handed propagation behaviour in-

troduces a paradigm that is useful for the design of microwave

devices, such as broadband directional couplers [3], leaky-

wave antenna with tunable radiation angle and beamwidth

[4] and super-resolution lenses that overcome the diffraction

limit [5]. The introduction of nonlinear reactive components

to a CRLH TL produces nonlinear amplitude behaviour. It

has been demonstrated that nonlinear (NL) CRLH TL based

structures display interesting phenomena such as harmonic,

subharmonic and parametric generation [8], envelope solitons

[9] and multistabilty [10]. In particular, the parametric interac-

tions in NL CRLH TL structures between a strong (pump) and

a weak (signal) inputs [6] offer the potential for very low noise

distributed amplifiers and oscillators at mm-wave and terahertz

frequencies. However, improvements in the understanding of

the parametric generation process are needed to enable design

of efficient parametric signal processing components.

(a) (b)

Fig. 1. (a) The 20 stages NL CRLH TL. (b) Zoomed view showing the
varactor connection and biasing circuitry.

State space models (SSMs) were developed to study CRLH

TLs [11]. In this approach, the distributed line was modelled

by series and shunt lumped circuit elements. In general, SSMs

cast the problem in an ẋ = f(x, t) form which permits the

mature and robust techniques of control and systems theory to

be applied. Moreover, SSMs are time domain models which

are necessary for studying nonlinear systems and arbitrary

input excitations.

In this paper, we illustrate the use of a nonlinear SSM to

describe parametric frequency generation in a NL CRLH TL.

The relationship between the parametric frequencies and the

linearized system’s poles is established. The paper is organized

as follows: Section II describes the NL CRLH TL schematics

and the SSM. The linearization of the SSM is carried out in

Section III where the system poles are calculated. Section IV

presents the impulse response and the natural frequencies of

the NL CRLH TL. Section V discusses parametric frequency

values and the connection with the natural frequencies of the

system.

II. STATE SPACE MODEL OF NONLINEAR TL

The NL CRLH TL, shown in Fig. 1, consists of a cascade

of 20 unit cells, where each unit cell has a series varactor CL,

where this capacitance is a function of the terminal voltages.

Fig. 2 shows a lumped element equivalent circuit model of the

NL CRLH TL. As Fig. 2 shows, Vb is applied to reverse bias

the varactors. The right handed circuit parameters LR and CR
are 2.7 nH and 1.1 pF, respectively. The left-handed inductance

LL = 1.797 nH. The varactor capacitance is determined by:
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Fig. 2. The lumped circuit model of the NL CRLH TL. For biasing reasons,
each unit cell of the nonlinear circuit is comprised of two cascaded sub-units
and hence the number of unit cells is N/2.

CL =
Cj0

(

1− v
ψ0

)γ , (1)

where Cj0 = 1.33 pF, ψ0 = 4.07 V, γ = 2.1 and v is

the reverse voltage across the varactor’s terminals. A bias

voltage of ≈ 1.4 V reverse biases the varactors and produces

a balanced frequency response. The state space equation:

ẋ = f(x, t) (2)

can be found by applying KVL and KCL. In (2), x is the state

variable vector. The SSM of the NL CRLH TL can be written

as:

ẋ = Ax+Bu+ F (x)x+DVb, (3)

where x is a 4N+2 column vector, A is a (4N+2)×(4N+2)

sparse matrix with elements determined by the circuit topology

and B is a 4N+2 column vector which maps the excitation to

the states, having one non-zero element B(2, 1) = 2/CRRs.

The nonlinearities are restricted to the sparse (4N+2)×(4N+

2) F matrix, which is a function of the nonlinear capacitance

CL. The non-zero elements of F are given by:

F (4m, 4m− 1) =
1

CL(x(4m, 1))
, (4)

for m = 1, 2, · · · , N . It is worth noting that the voltage v

in (1) is related to x(4m, 1) by

v = (−1)m−1x(4m, 1). (5)

D is a 4N+2 column vector that explicitly links the DC bias

voltage to the states.

III. LINEARIZATION OF THE STATE SPACE MODEL

In this section, the SSM given by (3) is linearized around the

equilibrium point, which is defined as ẋ = 0 or equivalently

f(x, t) = 0. Through such small signal linearisation we obtain

the system eigenvalues, thereby characterising the frequency

response, stability and dynamic behaviour of the system at
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Fig. 3. The eigenvalues λ = σ + jω of the Jacobian matrix J of (7),
representing the poles of the NL CRLH TL of (3) linearised about equilibrium
point ẋ = 0.

this equilibrium point in response to disturbances. For the

NL CRLH TL shown in Fig. 2, the equilibrium point can be

found by applying the bias voltage and waiting until the system

reaches steady state. The capacitance CL of the varactors is

determined by setting v = Vb in (1). The linearized system is

then determined by finding the Jacobian J of the right hand

side of (2), where J is a (4N + 2) × (4N + 2) matrix with

i, j elements given by:

Jij =
∂fi
∂xj

. (6)

The Jacobian of the NL CRLH TL in (3) is then:

Jij = Aij + F ′

ij , (7)

where F ′

ij = 1/CL(v = Vb) when i = 4m, j = i − 1, m =

1, 2, · · · , N and is zero elsewhere. The eigenvalues (or

poles) of J determine the natural response of the NL CRLH

TL structure, and are plotted in Fig. 3.

The time and frequency domain responses of this system

are strongly influenced by the lightly damped (dominant) poles

around 2 GHz. Indeed as will be seen in Section V, the lowest

parametric frequency is located in the area bounded by the

two dashed-dotted lines and in the vicinity of the dominant

poles. Note that all of the poles appear as complex conjugate

pairs.

IV. IMPULSE RESPONSE OF THE LINE

In this section, the SSM given by (3) is solved numerically

using Runge-Kutta Method (ODE45, MATLAB R©). Fig. 4

shows the time and frequency domain responses of the output

voltage. In this configuration the bias voltage was applied at

t = 0 and a pulse of width 10 ps and height of 10 V was

applied to the input at t = 1.1 µs. This timing guarantees that

the transient response due to the bias is sufficiently small. The
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Fig. 4. The impulse response of the NL CRLH TL. The input pulse Vs =

10 V applied for 10 ps. The impulse is fired on at t = 1.5 µs. (a) The time
response. (b) The FFT of the time response over the period [1517-1549] ns.
(c) The zoomed time response in the box in (a).

spectrum is calculated using a Fourier Transform of the time

response over the interval 1517-1549 ns (shown in Fig. 4(c)).

The sampling rate is 2 THz.

From the calculated spectrum, it is clear that the main

natural frequencies are f01 and f02. These frequencies are

consistent with the lowest and highest cut off frequencies,

respectively, of the bandpass CRLH TL (Fig. 7). To illustrate

this correlation, the lower left-handed cut off frequency (Bragg

frequency fB) was calculated for a range of capacitance values

(Cj0 of (1) from 0.33 to 2.00 pF), where from [2]:

fB = fR

∣

∣

∣

∣

∣

1−

√

1 +
fL
fR

∣

∣

∣

∣

∣

, (8)

where fR = 1/2π
√
LRCR, fL = 1/2π

√
LLCL. Values for

the frequency f01 are computed from the frequency spectrum

after solving the SSM in (3) for each CL value. These results

are shown in Fig. 5 along with the values of the imaginary

components of the smallest eigenvalue λmin for each CL (Fig.

3). There appears to be very good agreement between all three

frequencies for each CL value. Furthermore, the calculated f01
frequencies were found to be independent on the pulse height

and slightly increase with increasing line resistance R.

The excitation of the frequencies f01 and f02 can be

explained by noting that the input impulse has a broadband

frequency response and thus excites the different system poles.

However, only the response of lightly damped poles is visible

over a relatively long interval. Other responses are quickly

damped with a few nano seconds after the application of the

impulse.

V. PARAMETRIC GENERATION

To study the parametric behaviour of the NL CRLH TL,

a sinewave pump voltage is applied. To avoid transients

associated with application of the bias voltage, the pump is
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Fig. 5. Demonstration of the agreement between (a) the left-hand Bragg
frequency fB of (8), (b) the observed natural frequency f01 in Fig. 4 using
SSM calculations, and (c) the imaginary component of the smallest eigenvalue
(Fig. 3), for a range of Cjo values in (1).

applied after the line reaches steady state. The spectrum of the

output node is calculated for a range of input pump powers.

As the pump power is increased above what appears to be a

threshold value, there is a rapid growth of spectral components.

Two prominent components at frequencies f1 and f2 appear

in the spectrum where f1 + f2 = fpump. These components

are referred to as the parametric components, and vary with

pump frequency as illustrated in the upper plot in Fig. 6.

The lowest parametric frequency f1 has a value which is

very close to fB , or equivalently f01. Given the comparatively

wide range of pump frequencies in Fig. 6, the corresponding

range of f1 values stays within the strip denoted by the two

dashed-dotted lines in Fig. 3. Hence, we infer that the lowest

parametric frequency is determined by the the frequencies of

the dominant poles of the linearized transmission line system.

The other parametric frequency f2 is then uniquely determined

by f2 = fpump − f1. Energy transfer from the pump to the

lightly damped poles is facilitated by the nonlinearities in the

system. The excitation of dominant poles can be explained by

noting that the spectral content of the pump at turn on (just

after t = 400 ns) is relatively broadband, thereby exciting the

system poles.

The frequencies calculated using SSM and presented in

Fig. 6(a) show very good agreement with the experimental

values presented in Fig. 6(b) [7]. The SSM predicts that the

two parametric frequencies start to diverge when fpump ≈

4.2 GHz, whereas the measured frequencies diverge at around

fpump ≈ 4.6 GHz. A number of factors could contribute to

this discrepancy. Firstly, the effect of component parasitics, not

taken into account in the SSM, alters the system performance,

as illustrated by the differences in the steady state frequency

responses close to fB shown in Fig. 7. Secondly, the value of

the unit cell resistor R which was taken to be 1 Ω in the SSM,

whereas the physical structure would have distributed and not

necessarily uniform loss mechanisms. Thirdly, the varactor
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Fig. 6. The two lowest parametric frequencies, f1 and f2, for given pump
frequencies, fpump using (a) State Space Model, (b) Measurements [7].
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model used here does not include forward bias diffusion

capacitance effects.

The parametric generation is the net result of two competing

processes. The first is the coupling between the pump and

the lightly damped poles. The other suppresses the generation

due to the dissipative nature of the structure, reflected in the

unit cell resistance R. Fig. 8 shows the time evolution of the

output when fpump = 4.5 GHz, Ppump = 5.5 dBm and R =

1 Ω. The bias voltage (Vb = 1.45V) is turned on at t = 0

and the pump at t = 400 ns. The 400 ns time lag guarantees

that the system reaches steady state before application of the

pump. The time domain waveform shows a slight decrease in

envelope amplitude between 1000 ns and 1200 ns, while the

gated spectral plots show a gradual evolution of the parametric

components, from the initial excitation (400-450 ns window)

to steady state around 1500 ns. When R is slightly increased

to 1.2 Ω, the parametric frequencies are suppressed. Similarly

below Ppump = 5.5 dBm, the parametric frequencies are not

observed.

VI. CONCLUSION

In summary a SSM was developed for time domain analysis

of a NL CRLH TL. The SSM approach brings a control theory

perspective to the study of the distributed circuit nonlinear left-

handed transmission line structure. The SSM was linearized

around the equilibrium point, from which the system poles

could be identified. It was shown that the lowest parametric

frequency is determined by the lightly damped dominant

poles of the linearized system. By varying the losses in

the SSM the onset of parametric frequency generation with

pump power and frequency can be determined. This insight

suggests that the dynamic behaviour of parametric frequency

generation is a balance between natural response excitation

and dissipation by the structure losses. The understanding of

the parametric generation process is crucial for the design of

efficient parametric amplifiers.
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