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Abstract:    Human activity recognition using wearable 

devices is becoming increasingly important. Techniques 

that estimate and recognize walking states while walkers 

carry an object in hand can be useful for safety and security. 

In this paper, we examine the recognition of walking states 

while walkers carry an object like a shoulder bag from data 

obtained by attaching a triaxial accelerometer to the wrists 

of walkers. The experimental results demonstrate that some 

states can be roughly identified from the accelerations and 

power spectrums. 
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1.  Introduction 
As the average life span increases, interest in health has 

likewise increased. The need to recognize human activity 

increases more and more as demand increases for a securer 

and safer life. Techniques for activity recognition using 

wearable devices are currently being researched [1-4]. For 

medicine, nursing, and health, many techniques related to 

the recognition of basic activity patterns such as walking, 

running, and going up and down stairs have been reported 

[5-10]. Moreover, recognitions of more complicated actions 

such as hand movements, daily life activity, sports, and fall 

detection have also been reported [4, 11-14]. With rapid 

advances in information and communications technology, 

wearable devices using not only accelerometers, but also 

gyroscopes, global positioning system (GPS), 

magnetometers, barometers, light sensors, temperature 

sensors, and image sensors have become available [1-4, 12, 

15, 16]. To more accurately recognize human motions, 

research has been reported concerning installed sensors on 

many anatomical regions of the human body [1, 16, 17]. 

For example, by providing multiple sensors in many places, 

a method to recognize the movement of the arm has been 

presented [17]. However, on taking practical uses into 

account, users have a preference for fewer sensors because 

of their low cost, small size, and ease of use. Recognition of 

walking with objects such as shoulder bags and carry bags 

has barely been reported. Techniques that recognize the arm 

state while walking and estimate the object which a walker 

has are available in various fields such as crime prevention 

and behavior monitoring.  

 In this paper, we address activity recognition when 

walking with an object in hand. A triaxial accelerometer is 

attached to the wrists of walkers as a watch would be, and 

features are extracted from acceleration data. We 

demonstrate that a good recognition result is obtained by 

using accelerations and power spectrums in each direction. 

Although the sensor was attached to the left wrists of 

walkers in this experiment, we assume that the sensors are 

attached to both wrists for practical use. 

 The rest of this paper is organized as follows. Section 2 

describes the experimental method. Section 3 presents the 

feature extraction and experimental results. Finally, Section 

4 concludes this paper. 

 

2.  Experimental Method 

We describe measurement conditions and walking states as 

an experimental method. 

 

2. 1 Measurement Conditions 

A weable device is attached to the wrist of a walker as an 

arm watch would be. The device used in this paper is 

shown in Fig. 1(a). The device is composed of a triaxial 

accelerometer sensor module ADXL335 (Analog Devices, 

sampling frequency of 20 Hz, measument range of ±3 G) 

and wireless module XBee (Digi International, 

communication speed of 250 Kbps). The XYZ directions 

express the positive axes of the accelerometer.  

 An example of the attached state is shown in Fig.1(b). 

In the standing state, the X, Y, and Z axes almost correspond 

to accelerations in the back and forth, up and down, and 

right and left directions, respectively. In this experiment, 

we collect acceleration data from eleven subjects, ten men 

and one woman. 

 

2. 2 Walking States 

The walking states that are described in this paper are 

shown in Fig. 2. As walking states while walkers carry an 

object, we selected seven states.  

 The meanings of each state in Fig. 2 are as follows: 

(a) NO:  Normal, walking naturally (empty-handed); 

(b) SB:  Walking while holding the shoulder string of a 

shoulder bag by hand; 

(c) CB:  Walking while pulling a carry bag; 

(d) UM: Walking with an umbrella up; 
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(a) Device                       (b) Attached state 

Figure 1. Wearable device used in this paper. 
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(e) SP:  Walking while watching the screen of a 

smartphone; 

(f) CA:  Walking while making a call; 

(g) PO:  Walking with a hand in a pocket. 

 

 Figure 3 shows the directions of a triaxial accelerometer 

on the wrist for each walking state. The directions except 

for NO (normal) and PO (pocket) are clearly different. 

Walking states except for NO are almost maintaining their 

wrist positions. 

 

3.  Features and Results 

We describe features of each walking state and 

experimental results. 

 

3. 1 Time Domain Features 

An example of raw accelerometer data is shown in Fig. 4, 

which represents subject data for 5 sec. In the figure, X, Y, 

and Z are the accelerations in the X, Y, and Z directions, 

respectively. C is the composite and can be calculated from 

     222
ZYXC   . (1) 

Here, α represents the acceleration. For example, the 

acceleration characteristics in Fig. 4(b) seem to be close to 

those in Fig. 4(a). However, the characteristics are clearly 

different from the characteristics of the other walking states.  

 The mean in each direction can be expressed as 

 

                               

(a) NO            (b) SB            (c) CB 

 

                      

   (d) UM            (e) SP            (f) CA            (g)  PO 

Figure 2. Wrist states while walking. 

 

       

(a) NO             (b) SB            (c) CB 

 

 

(d) UM            (e) SP            (f) CA            (g)  PO 

Figure 3. Directions of triaxial accelerometer sensor. 

-2

-1

0

1

2

0 1 2 3 4 5

A
cc

el
er

a
ti

o
n

 (
G

)

Time (s)

X

Y

Z

C

 
(a) NO 

-2

-1

0

1

2

0 1 2 3 4 5

A
cc

el
er

a
ti

o
n

 (
G

)

Time (s)

X

Y

Z

C
-2

-1

0

1

2

0 1 2 3 4 5

A
cc

el
er

a
ti

o
n

 (
G

)

Time (s)

X

Y

Z

C

 
(b) SB                                     (c) CB 
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(d) UM                                   (e) SP 
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(f) CA                                    (g) PO 

Figure 4. Example of raw accelerometer data for one 

subject. 

 

 

Figure 5. Acceleration average for eleven subjects. 
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     



n

i
in 1

1
 


, (2) 

where α represents the acceleration, frequency, or power 

spectrum, β is the X, Y, Z, or C, and n is the sampling 

number. Figure 5 shows the average of the acceleration data 

for each state, obtained by eleven subjects. From the figure, 

we can see that the differences in the direction of Y and the 

magnitude of accelerations of X and Y appear as features. 

 

3. 2 Frequency Domain Features 

For frequency domain features, we get characteristics of 

power spectrums obtained by fast Fourier transform (FFT) 

using a window size of 128 samples. Figure 6 shows an 

example of characteristics of power spectrum vs. frequency.  

 Figure 7 shows the mean μf and standard deviation ±σf 

of the frequencies in which power spectrum reaches the 

maximum. The standard deviation can be expressed as 

 






n

i
in 11

1
    . (3) 

In Fig. 7, the red mark shows the mean and the top and 

bottom of the blue line are respectively +σf and –σf. SB, 

UM, and SB from Fig. 7(a) (X axis), CB and CA from Fig. 

7(b) (Y axis), CB and SP from Fig. 7(c) (Z axis), and SB, 

UM, SP, and CA from Fig. 7(d) (composite) are in narrow 

frequency ranges. In addition, NO in the X axis is lower in 

frequency. 
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(a) NO                                   (b) SB 
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(c) CB                                   (d) UM 

Figure 6. Example of power spectrum for one subject. 
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Figure 7. μf and ±σf of frequencies in which power 

spectrum reaches maximum for eleven subjects. 
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Figure 8. μp and ±σp of maximum power spectrums for 

eleven subjects. 

 

Table 1. Extracted and selected features. 

 NO SB CB UM SP CA PO 

A_X >-0.71 <-0.74 >-0.71 <-0.74 <-0.4 >-0.5 <-0.71 

A_Y >0.25 <0 >0.25 <0 <0 <-0.5 >0 

A_Z >-0.54 >-0.6 >-0.54 >-0.6 <-0.6 >-0.5 >-0.67 

F_X   >1.53     

F_Y >2.14, 

<1.89 

      

F_Z >2.14, 

<1.63 

      

F_C   >2.35, 

<0.31 

    

P_X >0.0011 >0.0033  <0.0033    

P_Y  >0.0012  <0.0012    

P_Z  >0.0004 >0.0008 <0.0004    

P_C >0.0012 >0.0033 <0.0009 <0.0033    

 

Table 2. Identification results. 

 NO SB CB UM SP CA PO 

Correct answer rate 

(%) 
91 73 91 82 82 100 91 

 

99



 Figure 8 shows the mean μp and standard deviation ±σp 

of the maximum power spectrums. From Fig. 8(b) (Y axis), 

UM is lower in power spectrum. From Fig. 8(c) (Z axis), 

UM is lower in power spectrum, and CB is higher in power 

spectrum. From Fig. 8(d) (composite), CB is lower in 

power spectrum. 

 

3. 3 Identification Results 

From these feature extractions, we select features and 

determine boundaries of selected features. Table 1 lists the 

kind and the discrimination condition of the features. A_X, 

A_Y, and A_Z stand for accelerations in the X, Y, and Z 

directions. F_X, F_Y, F_Z, and F_C stand for frequencies 

in the X, Y, and Z axes and composite. P_X, P_Y, P_Z, and 

P_C stand for power spectrums in the X, Y, and Z axes and 

composite. The accelerations of the XYZ axes are used for 

all walking states. 

 Only from the acceleration average can we distinguish 

SP, CA, and PO. In other words, seven walking states are 

classified into five groups by the accelerations of the XYZ 

axes. The remaining states are distinguished by considering 

the frequency and power spectrum. As shown in Table 2, 

the identification results using the proposed method are 

good, correct answer rates. 

 

4.  Conclusion 

We focused on walking state recognition when walking 

with an object in hand and examined feature extraction 

when by attaching a triaxial accelerometer to the wrists of 

walkers. By determining threshold conditions from the 

average of accelerations, the mean and standard deviation 

of frequencies of a maximum power spectrum, and the 

mean and standard deviation of maximum power spectrums, 

we showed that the seven walking states assumed in this 

paper can be estimated. Although recognition is based on 

the attributive conditions, and distinguishing similar states 

may be difficult, the proposed method is applicable to some 

extent for predicting a walking state with an object in hand. 
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