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Abstract:    Recently, 3D die-stacked DRAM technologies 

have been adopted by many processor vendors as a solution 

to the memory wall problem. To effectively utilize this 

large in-package memory, there are proposals to use it as a 

cache. Page-based caches have drawn much attention to 

reduce the cost of tags by increasing the granularity of 

caching. However, page-based caches waste cache capacity 

by over-fetching blocks that are not actually used during the 

page's lifetime in the DRAM cache. In this paper, we 

introduce a novel footprint caching technique, which 

greatly improves the space efficiency of a page-based cache. 

The key idea is to overlay two sparse pages with many 

invalide blocks into a single physical page, thus 

maximizing page utilization. Our cache design improves 

the IPC by 17.9% and reduces cache miss by 5% over a 

state-of-the-art footprint cache. 
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1.  Introduction 

 

Recently, to use effectively large in-package DRAM, page-

based cache designs have been proposed to minimizing 

cache tag overhead. Unlike the conventional block-based 

caches (e.g., 64B block size), which require large tag 

storage and then incur long tag access latency, page-based 

caches increase the caching granularity to several KBs to 

reduce storage overhead and improve cache hit rate by 

better exploiting spatial locality.  

Caching at page granularity alleviates the cache tag 

overhead, but the tag overhead still significant as DRAM 

cache size continues to grow. Lee et al. [2] propose Tagless 

DRAM Caches (TDCs), which align the granularity of 

caching with OS page size and employ the cache-map TLB 

(cTLB) to maintain virtual-to-cache address mappings 

directly. So a cache tag-checking operation is eliminated 

from the cache access path to yield lowest cache hit latency.  

Page-based caches suffer an over-fetching problem. 

Caching at page granularity has benefit of high hit rate by 

allocating many data blocks at once, but sometimes unused 

blocks as well. These over-fetched blocks cause off-

package bandwidth pollution and cache capacity wastes. 

To address this problem, Jevdjic et al. [3] propose Footprint 

Cache to improve the bandwidth efficiency of page-based 

DRAM caches. Footprint Cache stores the memory 

footprints of evicted pages in a small Footprint History 

Table. Using this footprint Footprint Cache fetches only 

referenced blocks from the requested page. While Footprint  

 

Figure 1. Space-Efficient DRAM cache architecture 

Cache mitigates bandwidth pollution, it still maintains 

expensive tags, thus scaling not as well as TDC. Jang et al. 

[1] propose Footprint-augmented Tagless DRAM Cache (F-

TDC), which combines footprint caching with TDC to 

improve bandwidth efficiency. Since F-TDC store all 

memory footprints in the page table, F-TDC achieves 

higher hit rate with low hardware cost. However, their 

solution does not address the problem of wasting cache 

space. Gulur et al. [4] propose Bi-model Cache, which uses 

two different caching granularities: block (64B) or page 

(512B) granularities considering spatial locality and meta 

data of the page. By allocating blocks, cache space can be 

exploited more efficiently. However, the cache miss latency 

is still long as a page and a block accesses are serialized. 

This paper introduces a space-efficient footprint cache, 

which allocates a half of the page when the footprint of the 

requested page indicates that valid blocks in the page can 

be contained in the half page. Thus, the proposed design 

improves both bandwidth and space efficiency. 

 

2.  Space-Efficient Footprint DRAM Cache 

 

Figure 1 shows the overall structure of the proposed design. 

cTLB, page table and Global Inverted Page Table (GIPT) 

are modified from F-TDC. 

Memory footprint: For footprint tracking, cTLB and page 

table store a reference bit vector and a valid bit vector. Each 

bit vector consist of 8 bits and 1 bit repersent 8 blocks. 

Reference bits indicate which blocks have been touched 

during previous page‟s lifetime to be used as fetching hints 

at next allocation. When a page is allocated in the DRAM 

cache, we check reference bits in page table to determine 

whether to allocate a half page or full page. Valid bits 

indicate which blocks are currently valid in the DRAM 

cache. When accesing the cache, we check valid bits in 

cTLB and the half-page bit. 
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Hardware Design: We use a bit-check unit, which 

determines whether the page is contained in a half-page. 

For example, if VA1 and VA3 of cTLB have valid block 

range of „2‟, VA1 and VA3 are allocated to a half-page. If 

the page is allocated to a half page, we obtain 1-bit 

information. The bit indicates the position of the half-page 

in the DRAM cache. Because two different half-pages are 

located in one physical page, GIPT also needs more storage. 

GIPT is extended to be a mapping structure that two page 

addresses to one cache address. 

Operations: The basic operations of the proposed cache 

are similar to F-TDC. For every cache access, there is 

overhead to access the bit-check unit. In case of a page miss, 

the bit-check unit checks the reference bits of a requested 

page and then, if the page fits in a half page, the page is 

allocated to the half-page. In case of a block miss for half-

page, the system checks the requested block. If the 

requested block cannot fit in half-page, generate page miss. 

And if the block exceeds half-page size, lookup GIPT and 

find other half page in same cache page. Next, migrate the 

other page and extend page that include requested block. 

 

3. Evaluation 

We evaluate performance of the proposed design using 

McSimA+ [5]. Table 2 summarizes architectural parameters.  

We use four benchmarks of CloudSuite [6]. Figure 2(a) 

shows the IPC of TDC, F-TDC and our proposal. 

Normalized IPC is better than F-TDC, but TDC has best 

performance for data caching and data analytics at 512MB. 

These workloads have small memory footprint to have a 

high reuse rate. However, as an application‟s size grows, F-

TDC and our proposal get better performance than TDC 

like 128MB DRAM cache size. Our proposal achieves 

average normalized IPC improvement by 39.1%, 11.1%, 

and 3.3% over F-TDC with 128MB, 256MB, and 512MB 

DRAM caches. Figure 2(b) shows the cache miss rate of 

TDC, F-TDC, and our proposal. Total cache miss means 

page miss and block miss. TDC has no block miss case, so 

in the majority of cases TDC has lower cache miss than F-

TDC. But our proposal can locate two pages in one cache 

page. Therefore, our proposal can reduce cache misses. Our 

proposal achieve 8.1%, 4.7%, and 2.2% lower cache miss 

rate than F-TDC at 128MB, 256MB, and 512MB. 

 

4. Conculsion 

This paper introduces a space-efficient footprint DRAM 

cache, which supports half-page caching for pages with 

small footprints. Space-efficient footprint DRAM cache 

locates two pages on one page and can support more cache 

capacity. Therefore, our proposal obtains higher cache hit 

ratio and improves cache performance. 
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(a) Normalized IPC (b) Cache miss rate 

Figure 2. Nomalized IPC and Cache miss rate for TDC, F-TDC, and Space-Efficient Footprint Cache 

 

 

Table 1. Architectural parameters 

Component Parameters 

CPU Out-of-order, 4cores, 3GHz 

TLB 
L1 32I/32D entries per core 

L2 512entries per core 

Cache 

L1 4-way 32KB I-cache/D-cache,             

64B line, 2cycle 

L2 16-way, 2MB shared cache per core,   

64B line, 6 cycle 

In-package 

DRAM 

1.6GHz (DDR 3.2GHz), 1channel, 2ranks, 

16banks per rank, 128 bits bus width 

Off-package 

DRAM 

800MHz(DDR 1.6 GHz), 1channel, 2ranks, 

64banks per rank, 64bits bus width 
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