
A Space-Efficient Footprint DRAM Cache

Jongwon Kim, Yongjun Lee, Hakbeom Jang, and Jae W. Lee
Sungkyunkwan University

2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea

E-mail: {kimjongwon, yongjunlee, hakbeom, jaewlee}@skku.edu

Abstract: Recently, 3D die-stacked DRAM technologies

have been adopted by many processor vendors as a solution

to the memory wall problem. To effectively utilize this

large in-package memory, there are proposals to use it as a

cache. Page-based caches have drawn much attention to

reduce the cost of tags by increasing the granularity of

caching. However, page-based caches waste cache capacity

by over-fetching blocks that are not actually used during the

page's lifetime in the DRAM cache. In this paper, we

introduce a novel footprint caching technique, which

greatly improves the space efficiency of a page-based cache.

The key idea is to overlay two sparse pages with many

invalide blocks into a single physical page, thus

maximizing page utilization. Our cache design improves

the IPC by 17.9% and reduces cache miss by 5% over a

state-of-the-art footprint cache.

Keywords—Die-stacked DRAM , Memory footprint

1. Introduction

Recently, to use effectively large in-package DRAM, page-

based cache designs have been proposed to minimizing

cache tag overhead. Unlike the conventional block-based

caches (e.g., 64B block size), which require large tag

storage and then incur long tag access latency, page-based

caches increase the caching granularity to several KBs to

reduce storage overhead and improve cache hit rate by

better exploiting spatial locality.

Caching at page granularity alleviates the cache tag

overhead, but the tag overhead still significant as DRAM

cache size continues to grow. Lee et al. [2] propose Tagless

DRAM Caches (TDCs), which align the granularity of

caching with OS page size and employ the cache-map TLB

(cTLB) to maintain virtual-to-cache address mappings

directly. So a cache tag-checking operation is eliminated

from the cache access path to yield lowest cache hit latency.

Page-based caches suffer an over-fetching problem.

Caching at page granularity has benefit of high hit rate by

allocating many data blocks at once, but sometimes unused

blocks as well. These over-fetched blocks cause off-

package bandwidth pollution and cache capacity wastes.

To address this problem, Jevdjic et al. [3] propose Footprint

Cache to improve the bandwidth efficiency of page-based

DRAM caches. Footprint Cache stores the memory

footprints of evicted pages in a small Footprint History

Table. Using this footprint Footprint Cache fetches only

referenced blocks from the requested page. While Footprint

Figure 1. Space-Efficient DRAM cache architecture

Cache mitigates bandwidth pollution, it still maintains

expensive tags, thus scaling not as well as TDC. Jang et al.

[1] propose Footprint-augmented Tagless DRAM Cache (F-

TDC), which combines footprint caching with TDC to

improve bandwidth efficiency. Since F-TDC store all

memory footprints in the page table, F-TDC achieves

higher hit rate with low hardware cost. However, their

solution does not address the problem of wasting cache

space. Gulur et al. [4] propose Bi-model Cache, which uses

two different caching granularities: block (64B) or page

(512B) granularities considering spatial locality and meta

data of the page. By allocating blocks, cache space can be

exploited more efficiently. However, the cache miss latency

is still long as a page and a block accesses are serialized.

This paper introduces a space-efficient footprint cache,

which allocates a half of the page when the footprint of the

requested page indicates that valid blocks in the page can

be contained in the half page. Thus, the proposed design

improves both bandwidth and space efficiency.

2. Space-Efficient Footprint DRAM Cache

Figure 1 shows the overall structure of the proposed design.

cTLB, page table and Global Inverted Page Table (GIPT)

are modified from F-TDC.

Memory footprint: For footprint tracking, cTLB and page

table store a reference bit vector and a valid bit vector. Each

bit vector consist of 8 bits and 1 bit repersent 8 blocks.

Reference bits indicate which blocks have been touched

during previous page‟s lifetime to be used as fetching hints

at next allocation. When a page is allocated in the DRAM

cache, we check reference bits in page table to determine

whether to allocate a half page or full page. Valid bits

indicate which blocks are currently valid in the DRAM

cache. When accesing the cache, we check valid bits in

cTLB and the half-page bit.

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

941

Hardware Design: We use a bit-check unit, which

determines whether the page is contained in a half-page.

For example, if VA1 and VA3 of cTLB have valid block

range of „2‟, VA1 and VA3 are allocated to a half-page. If

the page is allocated to a half page, we obtain 1-bit

information. The bit indicates the position of the half-page

in the DRAM cache. Because two different half-pages are

located in one physical page, GIPT also needs more storage.

GIPT is extended to be a mapping structure that two page

addresses to one cache address.

Operations: The basic operations of the proposed cache

are similar to F-TDC. For every cache access, there is

overhead to access the bit-check unit. In case of a page miss,

the bit-check unit checks the reference bits of a requested

page and then, if the page fits in a half page, the page is

allocated to the half-page. In case of a block miss for half-

page, the system checks the requested block. If the

requested block cannot fit in half-page, generate page miss.

And if the block exceeds half-page size, lookup GIPT and

find other half page in same cache page. Next, migrate the

other page and extend page that include requested block.

3. Evaluation

We evaluate performance of the proposed design using

McSimA+ [5]. Table 2 summarizes architectural parameters.

We use four benchmarks of CloudSuite [6]. Figure 2(a)

shows the IPC of TDC, F-TDC and our proposal.

Normalized IPC is better than F-TDC, but TDC has best

performance for data caching and data analytics at 512MB.

These workloads have small memory footprint to have a

high reuse rate. However, as an application‟s size grows, F-

TDC and our proposal get better performance than TDC

like 128MB DRAM cache size. Our proposal achieves

average normalized IPC improvement by 39.1%, 11.1%,

and 3.3% over F-TDC with 128MB, 256MB, and 512MB

DRAM caches. Figure 2(b) shows the cache miss rate of

TDC, F-TDC, and our proposal. Total cache miss means

page miss and block miss. TDC has no block miss case, so

in the majority of cases TDC has lower cache miss than F-

TDC. But our proposal can locate two pages in one cache

page. Therefore, our proposal can reduce cache misses. Our

proposal achieve 8.1%, 4.7%, and 2.2% lower cache miss

rate than F-TDC at 128MB, 256MB, and 512MB.

4. Conculsion

This paper introduces a space-efficient footprint DRAM

cache, which supports half-page caching for pages with

small footprints. Space-efficient footprint DRAM cache

locates two pages on one page and can support more cache

capacity. Therefore, our proposal obtains higher cache hit

ratio and improves cache performance.

References

[1] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W.

Lee,“Efficient Footprint Caching for Tagless DRAM Caches,”

in Proc. 22nd International Symposium on High Performance

Computer Architecture (HPCA), 2016.

[2] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W.

Lee,“A Fully Associative, Tagless DRAM Cache,” in Proc.

42nd Annual International Symposium on Computer

Architecture (ISCA), 2015.

[3] D. Jevdjic, S. Volos, and B. Falsafi, “Die-Stacked DRAM

Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have It

All with Footprint Cache,” in Proc. 40th Annual International

Symposium on Computer Architecture (ISCA), 2013.

[4] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan,

“Bi-Modal DRAM Cache: Improving Hit Rate, Hit Latency and

Bandwidth,” in Proc. 47th Iternational Symposium on

Microarchitecture (MICRO), 2014.

[5] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A

Manycore Simulator with Application-level+ Simulation and

Detailed Microarchitecture Modeling,” in Proc. IEEE

International Symposium on Performance Analysis of Systems

and Software (ISPASS), 2013.

[6] “CloudSuite benchmark 2.0.”

http://parsa.epfl.ch/cloudsuite.

(a) Normalized IPC (b) Cache miss rate

Figure 2. Nomalized IPC and Cache miss rate for TDC, F-TDC, and Space-Efficient Footprint Cache

Table 1. Architectural parameters

Component Parameters

CPU Out-of-order, 4cores, 3GHz

TLB
L1 32I/32D entries per core

L2 512entries per core

Cache

L1 4-way 32KB I-cache/D-cache,

64B line, 2cycle

L2 16-way, 2MB shared cache per core,

64B line, 6 cycle

In-package

DRAM

1.6GHz (DDR 3.2GHz), 1channel, 2ranks,

16banks per rank, 128 bits bus width

Off-package

DRAM

800MHz(DDR 1.6 GHz), 1channel, 2ranks,

64banks per rank, 64bits bus width

942

