
MILP-based Scheduling for Clock Latency Minimization in High-level Synthesis

Keisuke Inoue1 and Mineo Kaneko2
1Department of Global Information and Management, Kanazawa Technical College

2-270 Hisayasu, Kanazawa, Ishikawa 921-8601, Japan
2School of Information Science, Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
E-mail : 1k-inoue@neptune.kanazawa-it.ac.jp

Abstract: The hardware cost of the realization of a clock
skew schedule tends to increase due to additional delay ele-
ments. Therefore, there is a demand to reduce clock latencies
at early design stage. This paper discusses a novel design
problem in high-level synthesis, to minimize clock latencies
with scheduling, since scheduling highly affects the required
clock latencies. Two variations of the clock latency minimiza-
tion problem are formulated as mixed integer linear programs.
Experimental results show that the proposed approach can re-
duce, the maximum clock latency, and the sum of clock laten-
cies, over the conventional design, in practical time.

Keywords—MILP, Clock skew, High-Level Synthesis

1. Introduction

In clock synchronous circuit design, the clock signal is glob-
ally distributed to registers via a clock network. The clock
latency of a register is the difference between the clock ar-
rival times at the register and at a reference register, and the
clock skew is the difference of clock latencies between two
registers. A clock skew schedule is a set of clock latencies,
and clock skew scheduling (CSS) is a task of deciding a clock
skew schedule. CSS views clock skews as a manageable re-
source rather than a liability for circuit performance improve-
ment [1]. Recently, CSS has been studied in high-level syn-
thesis (HLS) [4], since the earlier we are in the design flow,
more is the amount of improvement possible.

A clock skew schedule can be implemented by inserting
delay elements into the clock line. The amount of delay ele-
ments increases roughly in proportion to the amount of clock
latencies. It causes area and power overheads, and is vulnera-
ble to the physical conditions such as process variation, which
would results in timing violation. Therefore, reducing clock
latencies is important in CSS-aware design.

In this paper, we point out that scheduling, a primary
task in HLS, significantly affects the amount of clock laten-
cies. Specifically, we tackle two variations of the clock la-
tency minimization problem: (1) To minimize the maximum
clock latency; and (2) to minimize the sum of clock laten-
cies. We propose mixed integer programming (MILP)-based
approaches for these problems. Experimental results using
benchmark circuits show that the proposed approaches can
reduce the maximum clock latency, and the sum of clock la-
tencies over the conventional design, without degrading the
operating clock period.

The remainder of the paper proceeds as follows: Section 2
covers the preliminaries. Section 3 describe our motivation,
and formulate our problems. In Section 4, we propose MILPs

to tackle the clock latency minimization problems. Experi-
mental results are shown in Section 5. Section 6 concludes
the paper, and presents some future works.

2. Preliminaries
2.1 Definitions and Assumptions

• We assume that an input processing algorithm is given
in the form of data-flow graph (DFG), in which a ver-
tex represents an operation, and an arc represents a data-
dependence.

• Scheduling is a task of assigning operations to time-slots
(clock-cycles (CCs)), such that the precedence and re-
source constraints are met. Letσi be a CC, such that the
output data ofoi (denoted asai) is written in a register
at the rising clock-edge of CC(σi + 1). We callσi the
schedule of operationoi. We regard the primary input as
the output of an imaginary operation scheduled in CC0.

• Functional unit (FU) binding is a task of assigning op-
erations to FUs, so that two operations with overlapping
lifetimes (execution time intervals) are not assigned to
the same FU (the lifetime constraint).

• Register binding is a task of assigning data to registers,
so that the lifetime constraint is met in a way similar
to FU binding. The lifetime of a data is a time-interval
during which the data must be stored in a register.

• CSS is a task of assigning real values to registers. Letτi
be the clock latency of a register to whichai is assigned.
We callτi the clock latency ofai.

• After performing scheduling, FU binding, and register
binding, a register-transfer-level datapath is generated
for each combination of an operation and its one input
data. We call it alocal datapath, then the overall datap-
ath can be regarded as a set of local datapaths.

• Clock skew schedules are realized by inserting delay el-
ements for individual registers.

2.2 Timing Constraints of Local Datapath

Let Ti be the actual time at which dataai is written in
a register (Ti is referred to as the register write-time ofai).
Then, the following equation holds.

Ti = σi · P + τi, (1)

whereP is the clock period.
For each combination of operationoj and an input data

ai, the register write-time ofaj , Tj , must be later than the
completion time of executingoj . Therefore, the following

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

925

setup constraintmust be met:

Ti +Dj + Tsetup ≤ Tj , (2)

whereDj is the longest-path delay time of an FU which exe-
cutesoj , andTsetup is the setup time of a register.

In general, several data can share a register. Ifai and an-
other dataak share the same register, andak overwritesai, Tj

must be earlier than the arrival time of the overwriting effect.
Therefore, the followinghold constraintmust be met:

Tj ≤ Tk + dj − Thold, (3)

wheredj is the shortest-path delay time of an FU to whichoj
is assigned, andThold is the hold time of a register.

For each data-pairai andaj that is assigned to the same
register, their clock latencies become same.

τi = τj (4)

The permissible range of the clock latency must be re-
stricted to a certain range as follows.

0 ≤ τi ≤ Tmax, (5)

whereTmax is a user-specified positive constant.

3. Problem Statement
Suppose that we are given (1) a DFG ; (2) a set of FUs

with delay information; (3) a set of registersR; (4) an FU
binding result such that the lifetime constraint is met; (5) a
register binding result such that the lifetime constraint is met;
(6) the maximum-permissible clock latencyTmax, 0 ≤ ∀τi ≤
Tmax; (7) the maximum permissible schedule lengthLmax,
0 ≤ ∀σi ≤ Lmax; and (8) the clock periodP .

Then, the HLS problems to be solved in this paper are de-
scribed as follows:
Problem 1: Perform scheduling and CSS, such that the max-
imum clock latency is minimized.
Problem 2: Perform scheduling and CSS, such that the sum
of clock latencies is minimized.

4. MILP-Based Approach
To solve our optimization problems, we propose MILP-

based approaches. Although MILP is NP-hard, it can be
solved by an MILP solver (e.g., [9]).

4.1 Temporal Order Constraint

MILP would be time-consuming for a large circuit. In this
section, we introduce an additional design constraint for FU
and register, namelythe temporal order constraint, to deal
with a large circuit. The temporal order constraint for an FU
is that for an operation-pairoi1 andoi2 assigned to the FU,
if σi1 < σi2 holds in the original FU binding result, then
σi1 < σi2 must be kept for the FU during scheduling. We
represent this temporal order foroi1 andoi2 asoi1 � oi2 .
iThe temporal order constraint for a register is defined in a
similar way. Intuitively, the temporal order constraint tries to
reduce the solution space by removing the degree of freedom
in the execution order (the storing order) in an FU (a regis-
ter), since the possible number of these orders exponentially
increase in the worst case.

4.2 Variables Definition

• σi: An integer variable for every operationoi, which rep-
resents the schedule ofoi.

• τAi : A real-valued variable for every dataai, which rep-
resents the clock latency of a register to whichai is as-
signed.

• τRj : A real-valued variable for every register Rj , which
represents the clock latency of Rj .

• τmax: A real-valued variable which represents the maxi-
mum clock latency.

4.3 MILP Constraints

For each arc(oi1 , oi2) in DFG, the precedence constraint
must be met.

σi1 + exec(oi2) ≤ σi2 , (6)

whereexec(oi2) is the execution CCs ofoi2 .
For every pair of operationsoi1 and oi2 assigned to the

same FU such that the temporal orderoi1 � oi2 holds,σi2

must be no smaller thanσi1 plusexec(oi2) to meet both the
lifetime constraint, and the temporal order constraint for FUs

σi1 + exec(oi2) ≤ σi2 (7)

The lifetime constraint for registers must be met. Differ-
ently from the lifetime length of an operation, the lifetime
length of a data can be changed during scheduling. Since the
end of the lifetime of a dataa is determined by the schedule of
an operationo which referencesa lastly, the operation whose
output data overwritesa must be scheduled later thano. For
dataai such that there is a dataaℓ which overwritesai (the
temporal orderai � aℓ holds),σℓ must be no smaller than
σk, whereok is an operation which referencesai.

σk ≤ σℓ (8)

Note that the resource constraints for FUs and registers are
always met since we are given FU and register binding solu-
tions.

For every operationoi2 and its input dataai1 , the setup
constraint and the hold constraint must be met. Therefore, we
have the following constraints.

σi1 · P + τAi1 +Di2 + Tsetup ≤ σi2 · P + τAi2 , (9)

σi2 · P + τAi2 ≤ σi3 · P + τAi3 + di2 − Thold, (10)

whereai3 is a data which overwritesai1 .
For every dataai, if ai is assigned to Rj , we have the fol-

lowing constraint.

τAi = τRj (11)

The range of everyτRj andσi must be restricted.

0 ≤ τRj ≤ Tmax, (12)

0 ≤ σi ≤ Lmax. (13)

926

4.4 Objectives

For Problem 1, we have to prepare the following con-
straint:

τRj ≤ τmax. (14)

The objective is to minimize the maximum clock latency:

Minimize : τmax. (15)

For Problem 2, the objective is to minimize the sum of
clock latencies (note that (14) is not required in this case):

Minimize :
∑

Rj∈R

τRj . (16)

5. Experimental Results
We have implemented our proposed MILP in C, ran on a

PC equipped with 2.67 GHz IntelR CoreTM i5 processor, and
tested it on a set of benchmarks. Each MILP was solved by
the commercial ILP solver IBM ILOG CPLEX ver. 11.0.0
[9]. As benchmarks, we used the Jaumann Wave digital Fil-
ter (JWF), the fifth-order Elliptic Wave digital Filter (EWF),
and the 16-point Fast Fourier Transform (16-FFT). We used
the FUs: ALU (addition/subtraction, longest-/shortest-delay
times = 6.0/3.0) and MUL (multiplication, longest-/shortest-
delay times = 15.0/8.0). These delay times includeTsetup and
Thold.

To obtain FU binding solution, we use a temporal schedul-
ing solution obtained by a heuristic scheduling algorithm,
namelylist-scheduling algorithm[10] under the assumption
that the clock period is 8.0. Then, the execution CCs of an
addition and a multiplication become 1 and 2, respectively.
Lmax is obtained by this scheduling solution. An FU binding
solution and|R| is obtained by the left-edge algorithm [10]
based on this scheduling solution. A register binding solution
andP is obtained by the MILP of CSS-aware register binding
for clock period minimization [7].Tmax is set asP .

For comparative experiments, we have tested the following
design.

List: Scheduling solution is obtained by list-scheduling,
and never changed.

Proposed: Scheduling solution is optimized by our MILP.
Table 1 shows the results for Problems 1 and 2. The col-

umn “DFG (#op)” represents the name of DFG with the num-
ber of operations, #op. In the column “FUs,” the parenthe-
sis (x, y) represents that the resource constraint includesx
ALUs andy MULs. The column “L′ ” represents the sched-
ule length obtained by list-scheduling after reducing the clock
period. That is, the execution CCs of an operation is changed
(e.g., the execution CCs of MUL is 2 in the initial scheduling
with P = 8.0, but changed to 3 ifP = 6.75). The value “L′ ”
means that if we allow to extend the schedule length to “L′,”
we can obtain zero-skew design. The column “time[s]” repre-
sents the consumed CPU time (seconds) for running CPLEX.

For almost all the cases, the proposed approaches were
able to reduce the maximum clock latency, and the sum of
clock latencies compared to design ‘List.’ For 16-FFT with
(5,2), clock latencies were completely removed. It means

that although there is a zero-skew schedule withLmax, list-
scheduling was not able to find it. Therefore, CSS-aware
scheduling is necessary. We can see that there is a trade-
off between the maximum schedule length and the amount of
clock latencies. The development of simultaneous optimiza-
tion of them requires further investigation.

6. Conclusion and Future Work
In this paper, we have proposed a scheduling approach

to clock latency minimization in high-level synthesis (HLS).
We have proposed mixed integer linear programming-based
approaches. Experiments confirmed the effectiveness of the
proposed approaches. Development of a comprehensive de-
sign framework considering HLS, clock skew scheduling, and
clock tree synthesis is left as an interesting future work.

References

[1] A. Takahashi and Y. Kajitani, “Performance and reli-
ability driven clock scheduling of sequential logic cir-
cuits,” Proc. IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 37–42, Jan-
uary 1997.

[2] J.L. Neves and E.G. Friedman, “Optimal clock
skew scheduling tolerant to process variations,”Proc.
IEEE/ACM Design Automation Conference (DAC),
pp. 623–628, November 1996.

[3] P. Vuillod, L. Benini, A. Bogliolo, and G. De Micheli,
“Clock-skew optimization for peak current reduction,”
Proc. IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), pp. 265–270,
August 1996.

[4] T. Obata and M. Kaneko, “Control signal skew schedul-
ing for RT level datapath synthesis,”Proc. IEEE Mid-
West Symposium on Circuits and Systems (MWSCAS),
vol. 2, pp. 1087–1090, August 2005.

[5] S.-H. Huang, C.-H. Cheng, Y.-T. Nieh, and W.-C. Yu,
“Register binding for clock period minimization,”Proc.
IEEE/ACM DAC, pp. 439–444, July 2006.

[6] M. Ni and S.O. Memik, “Early planning for clock skew
scheduling during register binding,”Proc. IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pp. 429–434, November 2007.

[7] S.-H. Huang and C.-H. Cheng, “Timing driven power
gating in high-level synthesis,”Proc. IEEE/ACM ASP-
DAC, pp. 173–178, January 2009.

[8] K. Inoue and M. Kaneko, “Early planning for RT-level
delay insertion during clock skew-aware register bind-
ing,” Proc. IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), pp. 154–159, Oc-
tober 2011.

[9] IBM ILOG CPLEX, http://www.ilog.com/
[10] G. De Micheli, Synthesis and Optimization of Digital

Circuits, New York: McGraw Hill, 1994.

927

Table 1. Experimental results

circuit
(#op)

FUs* |R| P Lmax L′

Problem 1: Max. clock latencyProblem 2: Sum of clock latencies

List Proposed List Proposed

τmax τmax time[s]
∑

τi
∑

τi time[s]

JWF
(22)

(2,1) 7 6.75 11 15 1.5 1.4 (−7%) 0.00 3.8 3.2 (−16%) 0.00

(2,2) 8 6.75 10 12 1.5 1.4 (−7%) 0.00 5.3 4.0 (−25%) 0.00

(3,2) 8 6.75 10 12 3.8 1.4 (−63%) 0.00 16.9 3.4 (−80%) 0.00

EWF
(42)

(2,3) 13 6.75 19 22 2.3 2.0 (−15%) 0.01 10.5 8.8 (−16%) 0.01

(3,3) 11 7.00 17 21 2.0 2.0 (−0%) 0.00 13.0 11.0 (−15%) 0.00

(3,4) 11 7.00 17 20 2.0 2.0 (−0%) 0.01 11.0 8.0 (−27%) 0.01

16-
FFT
(97)

(5,2) 20 7.20 20 29 2.4 0.0 (−100%) 0.01 24.0 0.0 (−100%) 0.01

(7,5) 18 7.33 11 15 2.0 1.2 (−40%) 0.00 14.0 4.0 (−71%) 0.01

(10,5) 18 7.20 11 15 1.8 0.6 (−67%) 0.01 18.6 1.2 (−94%) 0.01

*(#ALU, #MUL)

928

