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Abstract— The wavelength response of a gold nano-cylinder 
chain is investigated by using electromagnetic simulation. We 
discuss that the plasmonic resonant peaks can be tunable by 
varying the vibration direction of electrons and the distance 
between cylinders.  
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I.  INTRODUCTION  
Recently, metal nano-particle chains are expected in a lot of 

practical applications such as light antennas [1][2], plasmonic 
waveguides[3], bio sensors[4], and so on. The chain can 
localize light energy in nano domain, because the energy can 
be transmitted as LSP (Localized Surface Plasmons). In this 
paper, we analyze the wavelength response of a gold nano-
cylinder chain for changing the vibration direction of electrons 
and the distance between cylinders. 

II. COMPUTATIONAL MODEL AND METHOD 
The computational model of the gold nano-cylinder chain is 

shown in Fig. 1. The chain consists of the five gold cylinders 
and they are arrayed linearly in equal intervals. The radius of 
the cylinder is 5nm and the distance between two cylinders is 
given by d. The vibration direction of electrons is assumed to 
be (a) vertical, (b) parallel, and (c) 45 degree inclined to the 
chain axis. Using a localized external source, LSP is excited in 
the C1 cylinder. The dispersion relation of gold is assumed as 
the Drude model 
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where ε∞ is the relative permittivity at infinite frequency 
and εD is the relative permittivity of the Drude model. We apply 
the FDTD (Finite-Difference Time-Domain Method) method 
[5][6] to electromagnetic simulation. The motion of electrons is 
considered as the current density to solve the following 
auxiliary differential equation of the gold nano-cylinders: 
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where v is the displacement vector, γ is the collision frequency, 
and me is the effective mass of electrons. Multiplying Eq. (2) by 
elementaly charge e and the electron density n0 , we obtain 
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where the polarization currents JD , and the plasma frequency 
ωp are given by 
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Applying the inverse fourier transform and the central 
difference scheme for (3), the differential equation for the 
polarization currents JD can be expressed as 
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Fig.1. Computational model of the gold nano-cylinder chain 
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III. NUMERICAL RESULTS 
Fig. 2 shows the wavelength responses of the nano-cylinder 

chain evaluated by the dipole moment in the C5 cylinder when 
the vibration direction of electrons is vertical to the chain axis. 
In the case of d = 10nm, the plasmonic resonant peak is found 
at 502.9 nm. The blue-shift of the plasmonic resonant peak at 
449.9 nm is confirmed when the distance becomes shorter, i.e. 
d = 2 nm. 

We investigate the wavelength responses when the 
vibration direction of electrons is parallel to the chain axis as 
shown in Fig. 3. In the case of d = 10 nm, the plasmonic 
resonant peak is at 564.5 nm. In the contrast with the vertical 
direction, the red-shift is observed at 700 nm when d = 2 nm.  

To confirm the above interesting and important properties, 
the vibration direction of electrons is selected as 45 degree 
inclined to the chain axis. Fig. 4 is a plot of the wavelength 
response. Two large plasmonic resonant peaks are appeared, 
since two LSP modes of vertical and parallel directions are 
excited by the source. From these results, it indicates that the 
plasmonic resonant peaks are tunable by varying the vibration 
direction of electrons and the distance between cylinders. 

IV. CONCLUSIONS 
In this paper, the wavelength response in a gold nano-

cylinder chain has been investigated. In the case of the vertical 
exciting direction, the plasmonic resonant peak is blue-shifted 
as the distance becomes shorter. By contrast, the plasmonic 
resonant peak is red-shifted when the vibration direction is 
parallel.  
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Fig. 4. Wavelength responses of the dipole moment in C5.The exciting  

direction is 45 degree inclined to the chain axis. 

Fig. 3. Wavelength responses of the dipole moment in C5. The exciting  
direction is parallel to the chain axis. 

 Fig. 2. Wavelength responses of the dipole moment in C5. The exciting  
direction is vertical to the chain axis. 
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