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Abstract: Undesirable events may happen to people at unex-
pected times. About 15% of the world’s population lives with
some form of disability. Most prosthetic devices have lim-
ited number of gestures and cannot fully replicate movements
of the body. The system utilizes non-invasive surface elec-
tromyography (sEMG) for extracting signals from the fore-
arm and uses neural network for pattern recognition. The
EMG signals were recorded and calibrated for one participant
only. The datasets were sampled to create the input matrix,
which are loaded to MATLAB for training, validation, and
testing. As shown after successive trials, fatigue or muscle
weakness is a significant factor in creating neural networks
for pattern recognition. It was verified that the system could
successfully extract, classify and output 10 individual finger
gestures and 4 manual grasps with a classification accuracy
of 93.6%. Statistical analysis was used to assess the classifi-
cation accuracy based on the results and the original training
data with 99% level of confidence.
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1. Introduction
Undesirable events may happen to people at unexpected
times. Many disabled people lose part/s of their body from
accidents like vehicular accidents, touching sharp or hot ob-
jects, or from diseases like cancer and diabetes that requires
amputation. Some disabled people have even lost part/s of
their body due to abnormalities during birth, such as the birth
defect Amelia. According to the World Health Organization,
about 15% of the world’s population lives with some form of
disability, of whom 2-4% experience significant difficulties in
functioning [1]. Most of these people need prosthetic devices
to face the challenges in their daily life. Most prosthetic de-
vices have limited number of gestures and cannot fully repli-
cate movements of the body [2]. Otto Bock, Touch Bionics,
and RSL Steeper are some examples of prosthetic companies
responsible for several innovations in the field of prosthetics.
Examples of advanced prosthetic devices are the Michelan-
gelo [3], i-Limb Ultra [4] and Bebionic 3 [5].

During muscle activation, an electrical signal, better
known as the myoelectric signal, is generated by the exchange
of ions through the muscle membranes. The movement of the
human body is achievable with the perfect integration of the
brain, nervous system, and muscles. The brain sends exci-
tation signals through the Central Nervous System to excite
certain muscles needed for an activity. The muscles are clas-
sified and innervated into groups or junction points where the
motor neurons and muscle fibers meet, termed Motor Units.
As long as the muscle is needed to generate force, the Cen-
tral Nervous System continuously repeats the activation of

the motor unit, which produces Motor Unit Action Potential
(MUAP) trains. These trains superimpose to produce the re-
sulting electromyography, abbreviated as EMG, signal. By
using noninvasive electrodes, these electrical activities pro-
duced by the muscles of the human body can be detected,
evaluated, and recorded. This supports electromyography or
EMG as a valuable technology to provide a natural way of
sensing, detecting, and classifying the different movements
of the human body. According to previous studies, even if a
person were to lose his hand, the electromyography activity is
still evident and strong as long as the amputees nerve endings
are still intact and had not suffered any nerve damage [6].

In general, the research aims to design a bionic hand sys-
tem capable of receiving electromyography (EMG) signals
from the muscles on the forearm and emulating human hand
movements with a wide range of motion including but not
limited to finger gestures (i.e. Thumb Extension, Thumb
Flexion, Index Extension, Index Flexion, Middle Extension,
Middle Flexion, Ring Extension, Ring Flexion, Little Exten-
sion, and Little Flexion) and manual grasps (i.e. spherical,
cylindrical, tip, and lateral) [7][8]. The design applies the
principles of surface electromyography, amplifiers, and filters
to extract Motor Unit Action Potentials of the forearm [6].

An Arduino-based microcontroller is used to classify hand
movements from the pre-programmed database and will per-
form the pre-programmed sequence to control an artificial
bionic hand.

2. Proposed Biomimetic Robot Hand

2.1 System Architecture

Fig. 1 shows the system design and process flow. The entire
system is composed of four main parts: the Sensor Circuit,
MATLAB, the Arduino Microcontroller, and the Robot Hand.
The sensor circuit is comprised of the noninvasive surface
EMG electrodes, the amplifier and filter circuit and is respon-
sible for collecting and extracting the data from the muscles
of the forearm. The data is then sent by the Arduino micro-
controller to MATLAB, which classifies the data based from
its neural network and cross-references its neural signature.
Once the data has been classified, MATLAB sends a com-
mand to the microcontroller that executes a predetermined
sequence from a preprogrammed database that controls the
Robot Hand. Predetermined movements were classified and
stored in the database. These classified movements are then
preprogrammed to mimic actual hand movements. Calibra-
tion and classification of neural signatures was done through
a series of testing. Simulated movements with known actual
movements were tested for the participant to check the preci-
sion and accuracy of the device. The device must be able to
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classify and identify the specific movement and run the pre-
programmed sequence to mimic the actual hand movement.
The test included running different sets of simulated move-
ments and checking the output of the system.

Figure 1. System design and process flow.

2.2 Circuit Design

Fig. 2 shows the block diagram and signal process flow for
the sensor circuit. First, the EMG signal is acquired through
the Ag-AgCl electrodes, labeled as Electrode 1, Electrode 2,
and Electrode REF for each channel. Because the signal am-
plitude is merely a few microvolts and is easily susceptible
to noise, the signal needs to be amplified through a cascade
of amplifiers and filters before it can be captured. The EMG
signal is acquired by the electrodes (Electrode 1 and Elec-
trode 2) and passes through the high voltage protection and
HF rejection circuit, which serve two purposes, to protect the
circuit from electrostatic discharge and to protect the forearm
(user) from electric shock from failing circuitry. The signal
then goes to through a high quality instrumentation amplifier,
which amplifies the EMG signal and lowers the impedance,
which makes it less sensitive to noise. It measures the volt-
age difference between the two locations on the muscle (elec-
trode). Before the signal is amplified again, it passes through
a high pass filter to remove the DC-voltage offsets, as large
DC-voltages tend to build up by accumulating electric charges
on the surface of the electrodes. The high pass filter has a cut-
off frequency of about 0.16 Hz.

The signal is once again amplified through a standard, non
inverting amplifier with a controlled gain regulator followed
by an identical second high pass filter before passing through
a third order low pass Besselworth filter, which minimizes the
distortion caused by aliasing which occurs when the signal is
converted to a digital signal. The third order Besselworth fil-
ter (not a standard term) is a combination of a Butterworth and
a Bessel filter. The resulting filter has a knee on the bound-
ary between the pass band and transition band that is more
rounded than that of a Butterworth filter, but sharper than that
of a Bessel filter.

To power the sensor circuit, it is possible to utilize the
built-in 3V or 5V supply of the Arduino microcontroller. Fol-
lowing the supply from the Arduino microcontroller is the
switching noise filter, which is made up of an inductor and
three capacitors. Because real-world capacitors only work
well within a limited frequency band, more than one capac-
itor must be used. One capacitor would handle the higher
frequency components, while the other the lower frequency

components. This filter is used to reduce the switching noise.
The amplifiers required a dual power supply that supplies both
the positive and negative power rail, but the built-in power
supply of the Arduino microcontroller provides only a single
voltage. To remedy this, the AREF signal is fed to an op-
erational amplifier to drive a virtual ground, VGND. In turn,
to avoid confusion, we renamed the GND of the microcon-
troller to AGND and are now used as the negative power rail
to power the amplifiers, while the VGND now acts as the vir-
tual ground point for the amplifiers.

Figure 2. Block Diagram and Signal Process Flow.

2.3 Design of the Neural Network

To build the neural network model, the training data must
first be generated. The process involves data collection, net-
work configuration, network training, and network validation.
There are 50 samples for each finger movements, and manual
grasps. These samples as well as an addition of 250 samples
for a control to act as the reference state into an input matrix.

To train, validate, and test the neural network, the samples
were randomly divided 70% for training, 15% for validation,
and 15% for testing. The training samples were presented
to the network, and its error would adjust the network. The
validation samples were used to measure network generaliza-
tion, and to halt training when generalization stops improving.
The testing samples have no effect on training and would only
provide an independent measure of network performance dur-
ing and after training. The neural network that was used for
pattern recognition is a two-layer feed-forward network, with
sigmoid transfer functions in the hidden layer. Scaled Con-
jugate Gradient back propagation algorithm was used to train
the neural network.

2.4 Design of the Robot Hand

The robot hand was made by carving stacks of layered acrylic
sheet bonded with super glue and then painted over. Two ser-
vomotors will control the movements of the thumb. A ser-
vomotor will serve as the Carpometacarpal (CMC) joint that
connects to the Trapezium (carpal bone of the wrist), while
the other will serve as the Metacarpophalangeal (MCP) joint
and controls the Interphalageal joint of the thumb with steel
wire [9].

Four sets of servomotors will also control the remaining
four fingers (index, middle, ring and little finger). Similar to
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the thumb, a servomotor will serve as the MCP joint that con-
nects to the metacarpal bones for the remaining four fingers.
The servomotor will control the Proximal Interphalageal joint
of the four fingers with steel wire. The Distal Interphalageal
joints of the remaining four fingers are fixed. An Arduino
Microcontroller controls the servomotors.

Figure 3. Implementation of proposed robot hand.

3. Results and Discussion

3.1 Data Gathering and Testing

According to [8], given a small set of gestures, the perfor-
mance of intact-limb and amputee subjects is statistically in-
distinguishable so an intact-limbed subject was selected to
participate on this test. The intact-limbed participant per-
formed actual finger movement with his arm position fixed
resting on a pillow. The participant was also asked to execute
the finger movements with a moderate, constant force, and
non-fatiguing contraction to the best of his ability for five tri-
als. Each trial had a minimum of 30 minutes interval to allow
the subject time to rest.

The classification accuracy was done with movement
classes done at regular time intervals of 10 seconds to allow
the participant to rest, but the different movement classes was
done at random; this means that any movement would not be
done in succession, but at random order. In a confusion ma-
trix, the results in the diagonal are the correct classification

Figure 4. Confusion matrix of trial 1.

Figure 5. Summary and overall classification accuracy of each
movement class and trial.

rates while the results outside the diagonal line are the errors.
The sum of the off-diagonal cells in each row of the confu-
sion matrix indicates the classification error for that particu-
lar movement class. Classification error means that the ac-
tual movement class was classified into a different predicted
movement class.

Fig. 5 shows the summary and overall average classifica-
tion accuracy with their respective standard deviation for all
finger and grip movement classes investigated of all trials.

Although intervals between trials were done to reduce the
effect of fatigue on the subject, Fig. 5 shows that because
of the strain on the muscles for some movements, over time
the effect of fatigue becomes more evident. This entails that
fatigue is a significant factor that must be considered when
implementing this technology for everyday use.

3.2 Statistical Analysis

The hypotheses to be validated are: ’The classification accu-
racy of the actual hand movements for the first trial, where the
muscles are said to be physiologically normal, can accurately
approximate the 95.7% classification accuracy of the neural
network with the original training data’ and ’The effect of fa-
tigue or strain on the muscles lowers or degrades the classifi-
cation accuracy of the actual hand movements to approximate
the 95.7% classification accuracy of the neural network with
the original training data.’

Z-test was used to determine whether the true value of pro-
portion (percentage or probability) of the first trial in Fig. 5 is
equal to or greater than the 95.7% classification accuracy of
the original training data with 99% level of confidence. Table
1 shows the statistical data for the first hypothesis.

Because the Z-value is greater than -2.33, we accept the
null hypothesis that the classification accuracy of the actual
hand movements from the first trial where the muscles are
said to be physiologically normal can accurately approximate
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Table 1. Statistical Data for Hypothesis 1
Null Hypothesis H0 : P = 0.957

Alternative Hypothesis H1 : P < 0.957
Correct Classification 141
Number of samples 150
Level of Confidence 99%
Level of Significance α = 0.01

Reject Condition Reject H0 if Z ≤ −2.33
Z-value Z = −1.02637

Table 2. Statistical Data for Hypothesis 2
Null Hypothesis H0 : P < 0.957

Alternative Hypothesis H1 : P ≥ 0.957
Correct Classification 702
Number of samples 750
Level of Confidence 99%
Level of Significance α = 0.01

Reject Condition Reject H0 if Z ≥ −2.33
Z-value Z = −2.83504

the 95.7% classification accuracy of the neural network with
the original training data with 99% level of confidence. How-
ever, to show the effect of fatigue or strain on the muscles,
statistical analysis on all five trials were also done.

Z-test was also used to determine whether the true value
of proportion (percentage or probability) of the combination
of all the five trials in Fig. 5 is less than the 95.7% classifica-
tion accuracy of the original training data with 99% level of
confidence. Table 2 shows the statistical data for the second
hypothesis.

Because the z-value is less than -2.33, we accept the null
hypothesis that fatigue or strain on the muscles lowers or de-
grades the classification accuracy of the actual hand move-
ments to approximate the 95.7% classification accuracy of the
neural network with the original training data.

4. Conclusion
This research presented a system that is capable of extracting
EMG signals from the muscles on the forearm to control a
robotic hand. The custom-built sEMG sensor circuit is capa-
ble of amplifying and filtering the raw EMG signals before
being processed by the neural network. It utilizes the use of
an artificial neural network to recognize patterns generated
by muscles on the forearm through non-invasive surface elec-
tromyography. The datasets of sEMG signals were sampled
to create the input matrix to generate the artificial neural net-
work. The feedforward neural network was used because of
its simplicity and suitability for pattern recognition to clas-
sify the neural signatures. The robot hand was able to em-
ulate a wide range of motion by performing preprogrammed
sequences from the microcontroller. It was verified that the
system could successfully extract, classify and output 10 in-
dividual finger gestures and 4 manual grasps (combination of
finger) with a classification accuracy of 93.6%. Through Z-
test, it was verified that the classification accuracy of the ac-

tual hand movements with muscles that are physiologically
normal could accurately approximate the classification accu-
racy of the neural network with the original training data with
99% level of confidence. However, fatigue or strain on the
muscles degrades the classification accuracy of the system.
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