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Abstract—A calculation of a permeability tensor of ferrites is 
presented in this paper. A ferrite resonator that is located 
between two parallel metal plates is introduced. Through 
theoretical derivation of the proposed scheme, the splitting 
phenomenon of the HE111 mode is verified. It is also found that 
the splitting behavior depends on the single magnetization value 
of the ferrite.  The analysis process and calculated results are 
presented in detail.  
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I.  INTRODUCTION  

Recently, many microwave applications in antennas, 
circulators, filters and absorbers have been developed using 
ferrites that exhibit magnetic properties. These devices are 
based on changeability of a permeability tensor. Therefore, it is 
very important to know of the permeability tensor at a specified 
dc magnetic bias. The studies to find the permeability tensor 
using resonators have been introduced so far [1], [2]. These 
models assumed that the permeability tensor was independent 
of its frequency. In practice, however, the permeability tensor 
of the ferrite shows frequency dependent characteristic.  

 This paper demonstrates the measurement technique of the 
permeability tensor of ferrites. Firstly, a theoretical analysis of 
the cylindrical ferrite resonator that is placed between two 
parallel metal plates is conducted. It is derived from 
transcendental equations after calculating fields of the inside 
and outside the resonator. The magnetization value of ferrites 
can be obtained by satisfying transcendental equations. Based 
on the calculated magnetization value, the permeability tensor 
of the ferrite is estimated by well-known equations [3]-[5]. The 
proposed method considers the effect of its frequency and has 
accurate solutions because this configuration has an analytical 
solution as well. A Li-ferrite with the permittivity εr = 16.5 and 

a saturation magnetization 4πMs = 1960 Gauss is considered in 
this paper.  

II. STATES OF FERRITE 

According to an applied dc magnetic bias, ferrites can be 
classified into three states. Ferrites in the completely 
demagnetized state have the scalar permeability (μd). In the 
demagnetized state, initial permeability μd, which depends on a 
saturation magnetization 4πMs and frequency, can be written 
by [3] 
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where γ (= 2.8MHz/Gauss) is the gyromagnetic ratio and ω is 
an angular frequency. 

In the case of the steady magnetization along z-direction, the 
permeability tensor [μ] of the ferrite can be represented as 
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The tensor components μ, κ, and μz for the partially 
magnetized state can be estimated [4], [5] by 
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where Ms is a saturation magnetization and M is magnetization. 
For the saturated state of ferrites, the elements of  and can 

be predicted using equations in [7] and μz is always equal to 1.  
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III. THEORETICAL ANALYSIS 

The geometry of the resonator is shown in Fig 1. A 
cylindrical ferrite resonator with a radius of r0 and a height of L 
is located between two parallel metal plates. This structure has 
been popular for a theoretical analysis as its simple geometry 
requires no magnetic wall assumption and as such it can 
provide more accurate solutions. This structure has four 
boundary conditions; 
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Also, the boundary conditions of parallel metal plates are given 
by 
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Applying the boundary condition (5), longitudinal wave 
number β is given by 
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In the demagnetized state, permeability and permittivity are 
scalar values. Thus, the characteristic equation for the normal 
modes is given as [6] 
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The fields within the ferrite can be obtained from a scalar 
potential ψ, which satisfies a fourth-order wave equation. 
When the scalar potential depends on the z-axis harmonically, a 
fourth-order wave equation can be separated into two second-
order differential equations:  
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Where 2

  is the transverse Laplacian operator, and χ1 and χ2 

are transverse wavenumbers which are followed as; 
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Where 2
0 0 0k     and ω is angular frequency. The ferrite in 

the magnetized state has two transverse wavenumbers. The 
fields inside the ferrite of the scalar potential ψ is given by  
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 The scalar potential ψ for a cylindrical ferrite rod is then 
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Fig. 1. Structure of ferrite resonator 
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With Jn is n-th order Bessel functions. The fields within air can 
be expressed by a superposition of TE and TM field equations. 
At this condition, TM and TE scalar potential are represented 
by 
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where 2 2 2

0k   . After substituting expressions for the inside 

and outside fields into boundary conditions at r = r0, we obtain 
a system of homogeneous linear equations for coefficients A, B, 
C, and D. As a result, the system can be written in the form of 
matrix as (14).    

In order to obtain the non-trivial solution of the system, the 
determinant of the matrix F should be zero.  

 det( ( )) 0F M    (15) 

Therefore, the magnetization of ferrite can be calculated at a 
specified magnetic bias. Computing numerical calculations 
was performed to find solutions satisfying the aforementioned 
requirement (14). 

 

IV. CALCULATION 

Eq. (7) is used to calculate the resonant frequencies of the 
normal modes in the demagnetized state and eq. (15) is used to 
calculate the resonant frequencies in the bias states. A Li 
ferrite is considered in this study The ferrite material has a 
saturation magnetization (4πMs) of 2000 Gauss and the 
permittivity of 16.5. The radius and the height of the resonator 
are 3.66 mm and 8.5 mm, respectively. The calculated results 
of the first two modes are illustrated in Fig. 2. The HE111 mode 
(the first mode) and TE011 mode (the second mode) in the 
demagnetized state are observed at 8.44 GHz and 9.71 GHz, 
respectively. However, when a static magnetic bias is applied, 
the HE111 mode is split into two resonant modes whereas the 
variation of the TE011 mode is small. It is found that the HE111 
mode is split into the HE+111 and HE-111 modes. The red line 
corresponds to the frequency shift of the HE-111 mode while the 
blue long dash line corresponds to the frequency shift of the 

HE+111 mode. As the magnetization of the ferrite increases up 
to 580 Gauss, the gap between two split resonant frequencies 
also increases. When the value of the magnetization exceed 
580 Gauss, the HE+111 mode disappears  because one of the 
transverse wavenumbers becomes the imaginary value. We 
cannot observe the mode splitting phenomenon in the TE011 
mode because it does not have the field component in the Φ-
direction. As increasing the static dc magnetic bias, the 
resonant frequency of the TE011 mode is slightly shifted to the 
lower frequency because the effective permeability of the 
ferrite is slightly increased. The calculated resonant 
frequencies versus the magnetization values are listed in Table. 
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Fig. 2. Calculated resonant frequencies versus the magnetization values. 

Based on the calculated magnetization values, the 
permeability tensor of the ferrite is estimated with the 
consideration of frequency dependent characteristics. For 
instance, if the resonant frequencies of the HE+111 mode is 
observed at 8.17 GHz, the magnetization value M is 300 Gauss. 
These parameters can be used for calculating the permeability 
tensor (using eq. (3)). The result is then 
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If the value of the magnetization is higher than the 
saturation magnetization, the tensor components can be 
modeled using well-known equations called Polder’s equations.  
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V. CONCLUSION 

In order to estimate a permeability tensor of ferrites, the 
cylindrical ferrite resonator between two parallel metal plates 
is analyzed in this paper. Using the example of a Li ferrite 
resonator we calculate the resonant frequencies and estimate 
the permeability tensor. Future work is still required to verify 
the proposed method experimentally.  
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