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Abstract—The scattering of E-polarized plane wave

from a finite array of axially magnetized ferrite cylinders

is analysed based on the method of moments with global

basis functions and Galerkin approach. To do so, the

scattered wave is expressed in terms of the equivalent

surface current. Furthermore, the surface impedance is

introduced so that the boundary condition is imposed at

the surfaces of cylinders in the unified manner as dielectric

or conducting cylinders. Some numerical examples are

given.

I. INTRODUCTION

The scattering of a plane wave by an arbitrary con-

figuration of parallel circular conductive or dielectric

cylinders was studied by many researchers. The method

of moments (MoM) was applied for the scattering by

two parallel perfect electric conducting (PEC) circular

cylinders[1]. The unknown current was expressed as

a linear combination of pulse functions and the point

matching technique was used. The scattering of an

incident plane wave from parallel circular dielectric and

PEC cylinders was analysed rigorously using a bound-

ary value approach[2]. The scattering by conducting,

lossy dielectric, ferrite cylinders was studied by using a

combination of a modified iterative scattering procedure

and the orthogonal expansion method[3]. The multiple

scattering by finite parallel PEC circular cylinders was

considered based on MoM with global basis functions

and Galerkin’s method[4].

In this paper, we analyse the scattering of E-polarized

plane wave from a finite array of axially magnetized

ferrite cylinders. We developed the technique based on

the method of moments (MoM) to treat with the problem

in the unified manner for conducting, dielectric or axially

magnetized ferrite cylinders. To do so, we assume the

equivalent surface current and introduce the surface

impedance to impose the boundary conditions.
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Fig. 1. Geometry of analysis

II. COMPUTATION METHOD

Consider N parallel infinitely long ferrite circular

cylinders as shown in Fig.1. The ferrite cylinders, of

which axes are parallel to the z axis, are magnetized

along their axes. To analyse this two-dimensional prob-

lem in a unified manner, we developed the technique

based on the method of moments. In order to treat the

ferrite cylinders in the same way as perfect conductive

cylinders, we assume the equivalent surface current

Jz(~ρ) on the surface of each cylinder.

A. Scattered waves

By using Green function or a Hankel function of 0-th

order H
(2)
0 (·), the scattered field is given in the following

integral form.

Es
z(~ρ) = −

kζ

4

N
∑

ν=1

∫

Cν

H
(2)
0 (k|~ρ− ~ρ ′|)Jz(~ρ

′)dρ′ (1)

Let ~ρν be the center of ν-th cylinder, and introduce the

local polar coordinate system (rν , θν). Then the current
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Jz(~ρ) on the ν-th cylinder should be a periodic function

of θν and its appropriate expansion is expected to be

given in terms of global basis functions as

Jz(~ρ) =

Nν
∑

n=−Nν

χ(ν)
n e−jnθν (2)

The global basis functions were used to reduce the

number of unknowns per cylinder and the necessary

computer memory is also reduced. Substitution of (2)

into (1), and usage of Graf’s addition theorem[5] yields

Es
z(~ρ) = −

πζ

2

N
∑

ν=1

Nν
∑

n=−Nν

χ(ν)
n kaνJn(kaν)

×H(2)
n (k|~ρ− ~ρν |)e

−jnθν (3)

B. Incident plane waves

The incident plane wave is expressed in the local

coordinate system as

Ei
z(~ρ) = E0e

−jk(x cosφ0+y sinφ0)

= E0e
−j~k·~ρν

∞
∑

n=−∞

(−j)nJn(krν)e
−jn(θν−φ0) (4)

C. Boundary Condition

In order to impose the boundary condition at the

surface of cylinders in the unified way for conducting,

dielectric or axially magnetized ferrite cylinders, the

surface impedance is defined by

Z(µ)(θµ) =
∞
∑

n=−∞

Z(µ)
n e−jnθµ (5)

Here the coefficients are obtained by solving the

Helmholtz equation with the separation of variables. The

following equation holds in the ferrite cylinder.

1

rµ

∂

∂rµ

(

rµ
∂Ez

∂rµ

)

+
1

r2µ

∂2Ez

∂θ2µ
+ k2ε(µ)r µ

(µ)
effEz = 0 (6)

where ε
(µ)
r and µ

(µ)
eff are the relative permittivity and the

effective relative permeability of the µ-th ferrite cylinder

and µ
(µ)
eff =

(

µ(µ)2 − κ(µ)2
)

/µ(µ). Here µ(µ) and κ(µ)

are the diagonal and off-diagonal elements of the tensor

permeability of µ-th ferrite cylinder and are given by

µ(µ) = 1−
ωMωH

ω2 − ω2
H

κ(µ) =
ωMω

ω2 − ω2
H

(7)

where ωH = |γ|H0, ωM = |γ|M0, and γ, H0, and M0

are the gyromagnetic ratio, d.c. magnetic field and the

saturation magnetization of the ferrte.

The effective relative permeability µ
(µ)
eff

is positive if

either ω <
√

ωH(ωH + ωM ) or ω > |ωH + ωM | holds.

Then a solution has the following form.

Ez(rµ, θµ) =
∞
∑

n=−∞

cnJn

(

k
(µ)
f rµ

)

e−jnθµ (8)

where k
(µ)
f = k

√

ε
(µ)
r µ

(µ)
eff . The tangential component of

the magnetic field is calculeted by using

Hθµ =
1

jωµ0µ
(µ)
eff

(

∂Ez

∂rµ
+ j

κ(µ)

µ(µ)

1

rµ

∂Ez

∂θµ

)

(9)

Hence

Z(µ)
n =

jζJn

(

k
(µ)
f aµ

)

√

ε
(µ)
r

µ
(µ)
eff

{

J ′
n

(

k
(µ)
f aµ

)

+ nκ(µ)

µ(µ)

Jn(k(µ)
f aµ)

k
(µ)
f aµ

} (10)

One can put µ(µ) = 1 and κ(µ) = 0 for the dielectric

cylinder.

In the case of
√

ωH(ωH + ωM ) < ω < |ωH + ωM |,

µ
(µ)
eff is a negative number. Then

Z(µ)
n =

−jζIn

(

K
(µ)
f aµ

)

√

ε
(µ)
r

|µ
(µ)
eff |

{

I ′n

(

K
(µ)
f aµ

)

+ nκ(µ)

µ(µ)

In(K(µ)
f aµ)

K
(µ)
f aµ

} (11)

where K
(µ)
f = k

√

ε
(µ)
r |µ

(µ)
eff |.

By using this surface impedance, the boundary condi-

tion is imposed as

Ei
z + Es

z = Z(µ) ∗ (H i
θµ

+Hs
θµ
)

=
1

2π

∫ 2π+α

α

Z(µ)(θµ − θ)
{

H i
θµ
(θ) +Hs

θµ
(θ)
}

dθ (12)

The tangential component of magnetic fields is obtaind

by

Hθµ =
1

jωµ0

∂Ez

∂rµ
. (13)

Furthermore, the Galerkin method is used to obtain

a sytem of linear equations. That is, the global basis

functions were also used as weighting functions.

824



D. System of Linear Equations

When the field point and the source point locate on the

different cylinders, the Graf’s addition theorem was used

again to evaluate the elements of the matrix analytically.








A11 A12 · · · A1N

A21 A22 · · · A2N

· · · · · ·
AN1 AN2 · · · ANN

















X1

X2

·
XN









=









B1

B2

·
BN









(14)

where Aνν and Aµν are (2Nν +1)× (2Nν +1) diagonal

matrix and (2Nµ + 1)× (2Nν + 1) matrix, respectively.

Xν and Bν are 2Nν +1 column vectors. Their elements

are

a(νν)mn = −
π2ζ

k

{

H(2)
n (kaν)−

Z
(ν)
n

jζ
H(2)′

n (kaν)

}

×(kaν)
2Jn(kaν)δmn (15)

a(µν)mn = −
π2ζ

k

{

Jm(kaµ)−
Z

(µ)
m

jζ
J ′
m(kaµ)

}

×kaµkaνJn(kaν)H
(2)
n−m(kRµν)e

−j(n−m)αµν (16)

b(µ)m = −
2π

k
E0kaµ

{

Jm(kaµ)−
Z

(µ)
m

jζ
J ′
m(kaµ)

}

×(−j)mej{mϕ0−kρµ cos(ϕµ−ϕ0)} (17)

E. Scattered Far-Field

The scattered field at any point can be computed

by (3) if the system of linear equations (14) is solved

numerically. Upon using the far-field approximation,

|~ρ−~ρν | ∼ ρ−~ρν ·~ρ/ρ and θν ∼ φ, the scattered far-field

is expressed as

Es
z(~ρ) ∼ E0

√

2

πkρ
e−j(kρ−π

4 )f(φ) (18)

where f(φ) is the scattered far-field amplitude defined

by

f(φ) = −
πζ

2

N
∑

ν=1

ejk~ρν ·
~ρ

ρ

·

Nν
∑

n=−Nν

χ(ν)
n kaνJn(kaν)e

−jn(φ−π

2 ) (19)

The scattering width σ(φ) of the multiple cylinders is

given by 4|f(φ)|2/k. Thus, the total scattering width σtot
is given by

σtot =

∫ 2π

0
σ(φ)dφ =

4

k

∫ 2π

0
|f(φ)|2dφ (20)

III. NUMERICAL EXAMPLES

The scattering from a ferrite circular cylinder can be

solved exactly by using the separation of variables. The

following numerical values are used for the computation:

ωM/2π = 4.9GHz; ωH/2π = 7.84GHz; the relative

permittivity of ferrite, εr = 15; the radius of ferrite

cylinder, a = 19.13mm. A comparison of the scattered

far-field pattern is shown in Fig.2 for several frequencies.

The results by separation of variables are plotted with

blue solid line and those obtained by the present method

are indicated by red dashed line. It is seen that the two

results are almost identical.

 2.5  2  1.5  1  0.5  0  0.5  1  1.5  2  2.5 0  0.5  1  1.5  2  2.5

present method

exact solution

(a) ω/ωM = 1.4

 5  4  3  2  1  0  1  2  3  4  5 0  1  2  3  4  5

present method

exact solution

(b) ω/ωM = 1.5

 3  2  1  0  1  2  3 0  1  2  3

present method

exact solution

(c) ω/ωM = 1.7

 5  4  3  2  1  0  1  2  3  4  5 0  1  2  3  4  5

present method

exact solution

(d) ω/ωM = 1.8

Fig. 2. The scattered far-field pattern for a ferrite cylinder.
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Fig. 3. A finite array of axially magnetized ferrite cylinders.

Let’s consider the scattering by a finite linear array

consisting of 10 axially magnetized circular cylinders

shown in Fig.3. Suppose that each cylinder has a radius

of a = 18.37 mm and the spacing s between centers of

adjacent cylinders is 61.22 mm. And the other numerical

values are the same as used in Fig.2. Assume that the

E-polarized wave is at grazing incidence (φ0 = 0◦) or

normally incidence (φ0 = 90◦). The scattered far-field

patterns at ω/ωM = 1.5 and ω/ωM = 1.7 are shown in
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Fig.4 and Fig.5, respectively. The energy errors from the

optical theorem were at most orders of 10−15.

 10  8  6  4  2  0  2  4  6  8  10 0  2  4  6  8  10

(a) φ0 = 0
◦

 40  30  20  10  0  10  20  30  40 0  10  20  30  40

(b) φ0 = 90
◦

Fig. 4. The scattered far-field pattern for the finite array at ω/ωM =

1.5.

 10  8  6  4  2  0  2  4  6  8  10 0  2  4  6  8  10

(a) φ0 = 0
◦

 80  60  40  20  0  20  40  60  80 0  20  40  60  80

(b) φ0 = 90
◦

Fig. 5. The scattered far-field pattern for the finite array at ω/ωM =

1.7.

IV. CONCLUSION

The scattering of E-polarized plane wave by an arbi-

trary configuration of axially magnetized ferrite cylinders

was analysed based on the mehod of moments with

global basis functions and the Galerkin method. The

surface impedance was introduced so that the boudary

condition was imposed at the surfaces of all of cylinders

in the unified manner so as to treat other kind of circular

cylinders such as conducting and/or dielectric ones.

The elements of the coefficient matrix were calculated

analytically. The method is easily applicapable to the

problems of the scattering from the structure consisting

of all kind of circular cylinders by using the proposed

surface impedance.
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