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Abstract—This paper presents a novel marching-on-in-time 
algorithm for analyzing thin-wire antennas with arbitrary 
structures. Transient charges and currents along the thin wire 
are iterated explicitly in a leap-frog fashion, similarly as in the 
finite difference time domain method. The input impedances of 
different types of thin-wire antennas in frequency domain are 
calculated through discrete Fourier Transform (DFT) and 
compared with those from Method of Moments (MoM), which 
shows that the proposed algorithm is effective and efficient, even 
in the case of complex wire structures.  
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I.  INTRODUCTION  

Thin-wire antennas are widely used in various scenes 
especially in lower frequency band below UHF, due to the 
advantages of light weight, flexible geometry, ease of 
manufacturing and mounting, etc. Method of moments (MoM) 
in frequency domain has been employed to analyze and design 
different wire antennas in most cases [1]. However, approaches 
in time domain may have some additional merits. Transient 
response of the antenna can be easily obtained in time domain 
and the mechanism of the radiation can be viewed more 
vividly and physically. Moreover, approaches in time domain 
may be more efficient, especially for wideband calculation, 
when the antenna has a complex geometry since no time-
consuming inversion of matrices is needed. As a consequence, 
method of moments in time domain (MoMTD) and other 
similar marching-on-in-time (MOT) algorithms have been 
applied to thin-wire antennas, but they have not been widely 
used because of stability and numerical convergence problems 
[2]-[4]. In 1988, Dalke put forward a marching-on-in-time 
method to analyze the coupling of the plane wave to thin-wire 
structures [5], in which transient charges and currents along the 
wires are iterated to form the time response to the incident 
pulse. In this paper, a similar charge and current marching-on-
in-time (CCMOT) algorithm is proposed to analyze arbitrary-
structure thin-wire antennas. A transient internal voltage source, 
instead of an incident plane wave is applied and several 
modifications are made to make it suitable for antenna analysis. 
An internal resistance is added to the source and a time 
averaging scheme applied to eliminate the problem of 
convergence. The frequency parameters of the antenna are then 

obtained by discrete Fourier Transform (DFT) and agree well 
with those obtained using MoM in frequency domain. 

II. DETAILS OF THE ALGORITHM 

A. Based Equations 

When a cylindrica1 thin wire satisfies the thin-wire 
approximation condition [6], the current and charge along the 
wire can be represented by a filament on the wire axis. 
Assuming 0/ A A , 0/   , c  , c  , 0/E E  
are normalized quantity of magnetic vector potential, electric 
scalar potential, linear charge density, volume charge density 
and electric field respectively, where 0 , 0 , c  are magnetic 
permeability, wave impedance and velocity of light in free 
space, according to the potential function theory and current 
continuity principle, we have 
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where  , tJ r ,  ,I s t  represent the volume current density and 

linear current density respectively, 's the variable along the 
thin-wire, R  the distance between the source point and the 
field point. Applying electric boundary condition on the surface 
of the thin wire, another equation is obtained, which is, 

    0 0 tan
, , 0s it t   E r E r  (5) 

where sE  and iE  are the scattering and incident electric fields, 
‘tan’ indicates the tangential component. Equations (1)-(5) 
form the basis of the CCMOT algorithm. For simplicity, all 
hats on the symbols of the normalized quantities are removed 
later in the paper. 
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B. Discretization of the Thin-Wire Structures and Time 

The thin-wire structure should be first discretized with 
straight segments before being analyzed by an MOT algorithm. 
Curve wires should be approximated by a series of straight 
segments, as in Fig. 1. Current or tangential magnetic vector 
potential nodes (hollow circles) are set at the middle of each 
segment and charge or electric scalar potential nodes (solid 
circles) are set at the two ends of each segment, which is 
suitable for dealing with the junctions of multiple thin wires [7]. 
The quantities at the middle of each segment represent the 
average value on the whole segment and the quantities at the 
end of each segment represent average value of all the half 
segments connected to the node. 

The maximum length of the segment should be constrained 
to no more than one tenth of the shortest wavelength in the 
frequency band to ensure the accuracy of the results.  Along the 
time axis, the quantities at the middle of each segment and at 
the both ends of each segment are sampled at one half time step 
interval, which conveniently leads to apply a central difference 
of second-order accuracy to form an explicit iteration algorithm. 
Courant constraint should be satisfied between the space 
increment and time step to ensure the stability, which is 

 min /t s c    (6) 

 t  is the time step and mins  is the minimum distance 
between any two of all positions  of quantities . 

C. Steps of the Algorithm 

A symbol  0.5 0n
mQ   as a quantity at the middle of the mth 

segment at the time of  0.5n t   and a symbol  0.5n
mQ   as 

a quantity at two ends of the mth segment at the time of n t  
are defined before we derive the algorithm as below. 

  Step 1: replacing partial differentiation in (3) with central 
difference, we can write 
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ms  is the length of the mth segment and  , 0i n
mE  is the  

electric field due to the excitation at the middle of the mth 
segment, which is usually a voltage of Gaussian pulse. 

Step 2: replacing the integral with summation in (1) and 
solving the current at the same time and same position as the 
tangential magnetic vector potential, we have 

      ,0.50.5 0.5
,

,

0 4 0 0m i

MI
nn n

m m m i m
i i m

I A C I    



    (8) 

 

Fig. 1. Discretization of the thin-wire structure 

Where MI is the total number of the segments and  ,m iC  the ith 

coefficient before the current of ith segment, ,m i the time 

delay between the middles of the ith and the mth segments, 
which is usually not an integer and should be interpolated to 
the nearby integer and a half time steps.  

Step 3: applying (4) on the closed surface around the 
junction (seen Fig. 1) , replacing the partial differentiation with 
central difference and solving the charge , we have 
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Where mJ  is the total number of the segments connected to the 

mth node and 1jp   depends whether the current flow toward 

or outward the mth node. 

Step 4: replacing the integral with summation in (2), we can 
write  
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Where MQ is the total number of the nodes and  ,m iD  the ith 

coefficient before the charge of ith nodes, ,m i the time delay 

between the ith and the mth nodes, which is usually not an 
integer and should be interpolated to the nearby integer time 
steps. 

The CCMOT algorithm can therefore be conducted when 
steps (1)-(4) are repeated until a convergence criterion is 
satisfied or the maximum number of time steps is arrived. Then 
the parameters in frequency domain can be obtained through 
DFT. The flow chart of the algorithm is shown in Fig. 2. 

Convergence or 
maximum time step?

Start

t = 0: Initialize A=0, I=0, Φ=0,ξ=0 

t = n + 0.5: Calculate the fields at the 
middle of the segment An+0.5 In+0.5 

t = n + 1: Calculate the fields at two 
ends of the segment ξn+1 Φn+1 

End

N

Y

DFT calculation of antenna’s 
parameters in frequency domain  

 

Fig. 2. The flow chart of the CCMOT algorithm 
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III. NUMERICAL RESULTS AND DISCUSSION 

A FORTRAN code has been written based on the CCMOT 
algorithm and employed to several examples. The computed 
input currents in time domain or input impedances are 
compared with other methods to verify the proposed algorithm. 

A. A Straight Dipole 

A straight dipole is the simplest case of thin-wire antenna. 
The length of the dipole L=10 m, the radius 1 cm.  A same 
Gaussian pulse is applied to excite the dipole when using 
CCMOT algorithm and a thin-wire FDTD algorithm. Transient 
input current and input impedance are shown in Fig. 3 and Fig. 
4 respectively. The numbers in the parentheses in the legends 
of figures are the total segment numbers. It can be seen from 
the figures that little difference exists between the transient 
results form both two methods, except for the late stage. The 
input impedances by CCMOT agree well with those by MoM, 
while those by FDTD is less accurate since FDTD’s cuboid 
cells cannot approximate the thin-wire well. 

B. A Loop Antenna 

A loop is a typical antenna with a closed structure, which 
usually makes the numerical calculation unstable. The loop 
with a radius of 3 meter is approximated by a polygon with 36 
straight segments. When it is excited by a Gaussian pulse at the 
middle of any straight segment and analyzed by the CCMOT 
algorithm, the computed transient input current in Fig. 5 shows 
a sudden divergence shortly after it nearly diminishes. To keep 
the result convergent, we apply a time averaging scheme, 
which is done every time after the step 2, using  

 1.5 0.5 0.5 1.5 2.5 3.50.125 4n n n n n n
m m m m m mI I I I I I           
  (11) 

 0.5 0.5 0.5 1.50.25 2n n n n
m m m mI I I I       
   (12) 

Then convergence is seen even after a long-time iteration. 
However, the input current does not converge to zero, which is 
a consequence of the DC component in the Gaussian pulse and 
can be solved by an excitation pulse without DC component, 
such as differentiated Gaussian pulse, as is pointed out in [4]. 

Another approach of removing or delaying the divergence 
is to use a voltage source with an internal resistance, as is 
shown in Fig. 5. In this case, the input current converges to 
zero because the DC component is dissipated by the internal 
resistance. Actually, the transient results before the divergence 
starts can be used to calculate the antennas’ parameters in 
frequency domain through DFT 
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Fig. 3. Transient input current of a straight dipole 
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Fig. 4. Input impedance of a straight dipole 
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Fig. 5. Transient input current of a loop antenna 

C. A  Helical Antenna on A Gound Plane 

More complex structure is a helical antenna on a ground 
plane. As an example used for verification, we assume that the 
diameter of the helix is 18 cm, the distance between adjacent 
two turns is 33.3 cm, the radius of the wire is 2 mm, and the 
total height of the helix is 300 cm with 9 turns. The ground 
plane effect can be accounted by the image principle. It is then 
analyzed by the CCMOT algorithm, with each turn of the helix 
approximated with 10 straight segments. The transient input 
current is shown in Fig. 6, in which complex reflection among 
the structure of the helix can be seen and divergence starts at 
the late stage if the antenna is excited by a zero-internal-
resistance voltage, while few times reflection can be seen and 
the transient input current drops to zero quickly without any 
divergence if an internal resistance is added. The calculated 
input impedances shown in Fig. 7 are in good agreement with 
those from NEC2, at the both case of approximation of 10 and 
20 straight segments to each turn. 

 

Fig. 6. Transient input current of a helical antenna on a ground plane 
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Fig. 7. The input impedance of a helical antenna on a ground plane.  (the 
number in the parenthesis represents the number of straight segments to 
approximate each turn of the helix) 

D. A Caged Duo-Conical Monopole Antenna 

At last, the CCMOT algorithm is applied to a caged duo-
conical monopole antenna, as in Fig. 8, which is composed of 6 
wires along the generatrices of a duo-conical. It is a typical 
structure with junctions of multiple thin wires. Other two 
softwares, NEC2 and FEKO, are used to simulate the same 
antenna except the CCMOT algorithm. The calculated input 
impedances are shown in Fig. 9, in which the number in the 
parenthesis represents the number of segments in one minimum 
wavelength in the analyzed frequency band. It can be seen that 
the numerical results from CCMOT agree well with those from 
FEKO, with different lengths of segment. However, the results 
from NEC2 do not converge as the segment length decreases. 
Therefore, the CCMOT algorithm maintain a considerable 
accuracy even being used to analyze thin-wire antennas with 
junctions of multiple wires, which attributes to the accurate 
treatment of the junction using current continuity principle. 
Besides, the cpu time cost by CCMOT has no difference with 
the requested number of frequency while the cpu time by 
FEKO or any other frequency method is in proportion to the 
requested number of frequency. 

 

Fig. 8. The geometry of the caged duo-conical monopole antenna, H1=4.8 m, 
H2=2.4 m, R=2.3 m, d=10 cm 

 

Fig. 9. The input impedance of a caged duo-conical monopole antenna. 

IV. CONCLUSION 

A novel marching-on-in-time algorithm is presented in the 
paper for analyzing thin-wire antennas. The divergence usually 
occurring in MOT algorithms can be reduced or delayed by a 
voltage source with an internal resistance and a time-averaging 
scheme. The accuracy of the CCMOT algorithm is verified by 
four numerical examples, which shows that the algorithm can 
be applied to thin-wire antennas with arbitrary structures, either 
simple or complex. Furthermore, as an MOT algorithm, it is of 
high efficiency, especially for wideband calculations, since no 
inversion of matrices is needed and wideband parameters can 
be obtained through one single calculation. 

REFERENCES 
[1] K. Mei, “On the integral equations of thin wire antennas,” IEEE Trans. 

Antennas Propagation, vol. 13, pp. 374-378, March, 1965. 

[2] S. Rao, T. Sarkar and S. Dianat, “A novel technique to the solution of 
transient electromagnetic scattering from thin wires,” IEEE Trans. 
Antennas Propagation, vol. 34, pp. 630-634, May, 1986. 

[3] R. Gomez Martin, A. Rubio Bretones, I. Sanchez Garcia, “Modelling of 
straight thin wires using time-domain electric field integral equations,”  
IEE Proc. Microwaves, Antennas and Propagation, vol. 141, pp. 123-
126, April, 1994. 

[4] G. Cerri, S. Chiarandini, P. Russo, “Numerical aspects in time domain 
modelling of arbitrarily curved thin wire antennas,” International Journal 
of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 
12, pp. 275-294, July, 1999. 

[5] R. A. Dalke, “A numerical method for the analysis of coupling to thin 
wire structures. Electromagnetic Compatibility,” IEEE International 
Symposium on Electromagnetic Compatibility, pp. 55-61, August, 1988. 

[6] G.J.Burke, A.J.Poggio, “Numerical Electromagnetic Code (NEC)-
Method of Moments, Part I:Program Description-Theory,” Lawrence 
Livermore National Laboratory, 1981, pp. 4-5. 

[7] W. Tai, R. King, “The tapered antenna and its application to the junction 
problem for thin wires,” IEEE Trans. Antennas Propagation, vol. 24, pp. 
42-45, January, 1976. 

 

820


