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Abstract: Quasi-periodic bifurcations have attracted consid-
erable attention in recent years. In this study, we discuss two
coexisting two-dimensional tori in an Arnol’d tongue gener-
ated in a three coupled delayed logistic map. The two coexist-
ing two-dimensional tori comprise 93 invariant closed curves.
One of two-dimensional tori disappear by a quasi-periodic
saddle-node bifurcation, and the other two-dimensional torus
bifurcates to a three-dimensional torus via a quasi-periodic
saddle-node cycle bifurcation. The generation of the three-
dimensional torus is confirmed by observing the attractor on
a double Poincaré section.
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1. Introduction
Quasi-periodic oscillations and quasi-periodic bifurcations

been the subjects of intensive research in recent years [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31]. Vitoro et al. demon-
strated that there are two possible bifurcation routes from a
two-torus to a three-torus. One is a quasi-periodic Hopf bi-
furcation, and the other is a quasi-periodic saddle-node bifur-
cation [10]. Quasi-periodic Hopf bifurcations are also called
quasi-periodic Neimark–Sacker (NS) bifurcation.

One of the major concerns in studying Arnol’d tongues in
dynamics that can generate three- or higher quasi-periodic
attractors is to find out how an Arnol’d tongue transits to a
higher-dimensional Arnol’d tongue near quasi-periodic Hopf
bifurcation. Takens and Wagener conducted a bifurcation
analysis for such complex bifurcation [27] Kuznetsov and
Meijer conducted Lyapunov analysis and clarified the bifurca-
tion structure near a codimension-two bifurcation point they
named flip-NS bifrucation [28]. Broer et al. reported more
complex transitions [1].

In this study, we investigate complex quasi-periodic bifur-
cations for two coexisting two-dimensional tori in an Arnol’d
tongue generated by a three-coupled delayed logistic map.
We find a novel bifurcation structure where there exists an
conventional Arnold’d tongue wherein two periodic attrac-
tors with period 93 coexist. This Arnol’d tongue bifurcates
to a two-dimensional torus-resonance tongues in which two
two-dimensional tori that comprise 93 invariant closed circles
(ICCs) coexist.

One of these ICCs disappear via a quasi-periodic saddle-
node bifurcation, and the other bifurcates to a three-

dimensional torus quasi-periodic due to a quasi-periodic
saddle-node cycle bifurcation. We confirmed these complex
quasi-periodic bifurcations by illustrating one-parameter bi-
furcation diagrams.

Figure 1. Two-parameter Lyapunov diagram near the QH2

bifurcation curve (M = 10, 000, 000 and N =
10, 000, 000 with a grid mesh of 1, 000× 1, 000).

2. Analysis
We carry out a Lyapunov analysis of the three-coupled de-

layed logistic map expressed by the following equation.

F ((xn, yn, zn, wn, un, vn)
⊤) :

xn+1 = yn,
yn+1 = B1yn(1− xn) + ε1wn + ε2vn,
zn+1 = wn,
wn+1 = B2wn(1− zn) + ε3vn + ε4yn,
un+1 = vn,
vn+1 = B3vn(1− un) + ε5yn + ε6wn,

(1)

where ε1, ε2, ε3, ε4, ε5, and ε6 are coupling parameters. Be-
cause the single delayed logistic map exhibits an invariant
one-torus that corresponds to a two-dimensional torus in vec-
tor fields via an NS bifurcation, the three-coupled delayed lo-
gistic map can generate an invariant three-torus that corre-
sponds to a four-dimensional torus in vector fields with three
zero Lyapunov exponents. Throughout the this study, we fix

ε1 = 0.01, ε2 = 0.002, ε3 = 0.001, ε4 = 0.02,
ε5 = 0.01, ε6 = 0.01, B3 = 2.05,

(2)

and allow parameters B1 and B2 to vary.
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The six Lyapunov exponents in Eq. (1) are calculated by
the following procedure.
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where M and N are sufficiently large integers.

In the figure, orange, blue, black, and dark green de-
note regions generating a periodic solution, an invariant one-
torus, an invariant two-torus, and an invariant three-torus,
respectively. In addition, NS, QH, SN, QSN indicate a
Neimark–Sacker bifurcation, a quasi-periodic Hopf bifurca-
tion, a saddle-node bifurcation, and a quasi-periodic saddle-
node bifurcation curve, respectively. A magnified view of
Fig. 1 is shown in Fig. 2. At a point marked P, two periodic
solutions with period 93 are observed. Moreover, two invari-
ant one-tori that comprise 93 ICCs are observed at a point Q.
Figure 3 shows a one-parameter bifurcation diagram in which

Figure 2. Magnified view of Fig. 1 .

one of the attractors is colored in red, and the other is colored

in green, which is traced to left from the point P. One of the

Figure 3. One-parameter bifurcation diagram. The bifurcation
parameter B1 decreases from P.

periodic solutions with period 93 denoted in red disappears
owing to an SN bifurcation at a point marked blue line, which
is derived rigorously by the procedure presented in [36]. In
contrast, the other periodic solution denoted by green bifur-
cates to an invariant one-torus that comprises 93 ICCs at the
red line, which can be an SN cycle bifurcation. The attractor
in the state space is shown in Fig. 4. The solution is identi-
fied as an invariant one-torus because the dynamics have one
exact zero Lyapunov exponent. In addition, we trace the bi-

Figure 4. Invariant one-torus that is observed after the saddle-
node cycle bifurcation.

furcation parameter from P to right. In this case, the periodic
solution denoted in green disappears by an SN bifurcation de-
noted in the red line as shown in Fig. 5, and furthermore, the
other periodic solution bifurcates to an invariant one-torus via
an SN cycle bifurcation denoted by the blue line.

In contrast, by decreasing the parameter B1 from Q, one-
parameter bifurcation diagram shown in Fig. 6 is obtained.
One of the invariant one-tori that comprises 93 ICCs denoted
in red disappears owing to a QSN bifurcation. Furthermore,
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Figure 5. One-parameter bifurcation diagram. The bifurcation
parameter B1 increases from P.

Figure 6. One-parameter bifurcation diagram. The bifurcation
parameter B1 decreases from Q.

the other invariant one-torus denoted in green bifurcates to an
invariant two-torus via QSN cycle bifurcation. The attractor
after the quasi-periodic saddle-node bifurcation is identified
as an invariant two-torus because the attractor on the double
Poincaré section forms an ICC as shown in Fig. 7. The bi-
furcation parameter values at which the QSN bifurcation and
the QSN cycle bifurcation can be obtained by observing the
attractors.

Finally, one-parameter bifurcation diagram that is obtained
by tracing the bifurcation parameter B1 to right from Q is pre-
sented in Fig. 8. In this case, an invariant one-torus denoted
in red disappears at the blue line in the figure via a quasi-
periodic saddle-node bifurcation. Furthermore, the other in-
variant one-torus denoted in green bifurcates to an invariant
two-torus through a quasi-periodic saddle-node cycle bifur-
cation.
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