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Abstract— Many people can use user-friendly internet 

services due to the development of IT and communication 

technologies. However, attackers perform attacks such as 

malware injection, DoS/DDoS, and system hacking to threaten 

end devices, personal information, and organizational assets. 

Security experts use anti-cyber-attack systems such as firewalls, 

anti-virus solutions, and intrusion detection systems (IDSs) to 

defend against various cyber threats. Also, many researchers 

work actively on machine learning-based detection models to 

protect and respond against advanced cyber-attacks. Therefore, 

we propose the stacked sparse autoencoder-deep convolutional 

neural network (SSAE-DeepCNN) model to detect network 

intrusions. Our proposed model is a semi-supervised learning 

model that combines stacked sparse autoencoder (SSAE) and 

deep convolutional neural network (DeepCNN). SSAE 

discovers new features from training data, and DeepCNN learns 

new features to detect network intrusions. We design various 

test scenarios to find the hyperparameters and structures of 

SSAE with the highest performance. We measure accuracy, F1-

Score, prediction time, and hardware resource consumption to 

evaluate and compare models. The best scenario shows an 

accuracy of 93.5% by adding sparsity to SSAE's bottleneck. 

There is no significant difference in performance compared to 

when SSAE is not used, but resources used by GPU and CPU 

can be saved. In the future, we plan to improve the proposed 

model to get better performance. 

Keywords—SSAE, DeepCNN, IDS, Deep learning, Semi-

supervised learning, Sparsity 

I. INTRODUCTION 

Many companies provide various internet services such as 
online shopping and mobile banking. Individuals take 
advantage of these services using various devices. Al-Qatf et 
al. [1] estimate that there will be 50 billion Internet-connected 
devices by 2022. For these services, mobiles and IoT devices 
collect and store user information. Attackers perform various 
cyber-attacks such as DoS/DDoS, malware injection, and 
side-channel attacks to steal this information and block the 
services [2]. Therefore, network security is very important in 
order to protect assets from various threats [3]. Security 
experts detect and defend various threats by employing 
firewalls, anti-virus solutions, and intrusion detection system 
(IDS). Among these systems, IDS automatically detects 
malicious behavior that violates security policies in networks. 
However, IDS challenges low accuracy and false alarm rate 
against the latest threats [4, 5] 

There are two types of IDS: network-based IDS (NIDS) 
and host-based IDS (HIDS) depending on the source of 
information [6, 7]. NIDS monitors all packets on the network 
and HIDS monitors all host behavior. Both NIDS and HIDS 
can take signature-based or anomaly-based approach as a 
detection method. Signature-based IDS can detect well-
known malware and attacks according to the patterns. 
However, it is difficult to detect unknown malware or zero-

day attacks. On the other hand, anomaly-based IDS analyzes 
all packets to detect malicious behavior. Sometimes, this 
happens false positive and false negative alarms. To solve 
these problems, many researchers study IDS with ML 
machine learning (ML) and deep learning (DL). 

ML is divided into three categories according to the 
learning method: supervised learning, unsupervised learning, 
and reinforcement learning. In supervised learning, each 
training samples consist of an input vector and an output 
(target) data. A supervised learning model trains the training 
samples and predicts the output vector from new samples. On 
the other hand, unsupervised learning performs data 
clustering or analyzes correlations using unlabeled data [8]. 
Reinforcement learning is a subcategory of machine learning 
that determines the next decision to obtain the best reward [9]. 
In particular, supervised learning is more dependent on 
training data than other methods. In supervised learning 
model, overfitting occurs when the model learns the details 
and even noise of training samples. If the model learns the 
training data too accurately, it can negatively affect the 
performance of the model on new data. Conversely, under-
fitting means that the model cannot learn the training data or 
generalize new data. Therefore, preprocessing such as 
numericalization, normalization, and dimension reduction is 
important in supervised learning to avoid such problems. 

In this paper, we propose a machine learning model for 
intrusion detection in the network. Our proposed model is an 
stacked sparse autoencoder-deep convolutional neural 
network (SSAE-DeepCNN) model which combines 
supervised and unsupervised learning. Stacked sparse 
autoencoder (SSAE)  consists of an encoder that transforms 
data and a decoder that reconstructs transformed data. In the 
encoder, the last layer generates new features by applying the 
sparsity constraints to the data. Deep convolutional neural 
network (DeepCNN), composed of multiple 1D-CNN layers, 
classifies the output vector from the transformed data 
generated by SSAE. 

This paper is organized as follows. Section 2 summarizes 
the related work on IDS, SSAE and CNN. Section 3 describes 
our proposed model. Section 4 explains the experimental 
setup, and evaluates the performance of SSAE-DeepCNN 
through the experiments. Finally, Section 5 concludes the 
paper. 

II. RELATED WORK 

A. IDS 

The growing rate of cyber-attacks on system networks in 
recent years has weakened the privacy and security of 
computer infrastructure and personal computers. Many 
researchers work on how to enhance the performance of IDS 
using ML and DL. Parkar et al. [10] introduce five problems 
faced by the IDS field applying ML and DL. The first problem 
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is difficult to generalize a normal state of traffic. This is 
because every session shows diverse traffic usage. Second, 
the misclassification results of the model will be enormous to 
fix it. In particular, a false negative is very sensitive. Because 
an undetected attack can break down an entire system. Third, 
there is a major difference of opinion between analysts and 
operators. In terms of detecting malicious behavior and 
detecting attacks, it may mismatch the requirements. Fourth, 
it is difficult to detect malicious behavior due to various traffic 
types. Finally, a public dataset is very few to advance the 
performance of the model and evaluate the model. The 
authors proposed choosing an appropriate learning method or 
data according to the purpose of using the IDS. 

B. Stacked Sparse Autoencoder 

Autoencoder is one approach to automatically learn 
features from unlabeled data. Autoencoder consists of input, 
hidden, and output layers. The encoder transforms an input 
vector into an abstract vector using a combination of input and 
hidden layers. The decoder reconstructs (or recovers) the 
abstract vector into the original input vector using a 
combination of the hidden layers and the output layer [11, 12, 
13]. SSAE belongs to one category of autoencoder. SSAE 
applies sparsity constraints to the hidden layers to obtain 
meaningful new feature vectors. 

Zhang et al. proposed Xgboost-based SSAE to learn 
meaningful feature vectors of NSL-KDD dataset. In addition, 
the model using the binary tree and ensemble method showed 
a F1-Score of 91.97%. Yan et al. described that feature 
extraction is important to accurately classify network traffic 
as high-dimensional data with ML. Therefore, the authors 
used SSAE to generate meaningful feature vectors of the 
NSL-KDD dataset. As a result, the support vector machine 
(SVM) learned the significant feature vectors that SSAE 
generated and showed an accuracy of 99.35% and a 
classification speed of 3.29 seconds 

C. Convolutional Neural Network 

CNN uses the mechanism by which the brain processes 
visual information. CNN automatically learns complex 
vectors from images using an extraction filter called a kernel. 
Azizjon et al. [14] roposed a 1D-CNN-based intrusion 
detection model for network intrusion detection. 1D-CNN 
processing one-dimensional vector showed the best accuracy 
of 91.2% and a F1-Score of 91.59%. Wu et al. [15] proposed 
the LuNet model, a hierarchical neural network, combining 
CNN and recurrent neural network (RNN) for network 
intrusion detection. The authors trained the LuNet model 
using the NSL-KDD and UNSW-NB15 datasets. In the 
experimental results, the LuNet model showed accuracies of 
97.4% and 97.7% for binary classification, and 99.1% and 
85.0% for multi-class classification. 

III. DESIGN OF MACHINE LEARNING MODEL FOR 

 INTRUSION DETECTION 

A. UNSW-NB15 dataset 

In this study, we use the UNSW-NB15 dataset. The 
UNSW-NB15 dataset is a public dataset created by Cyber 
Range Lab by collecting and processing network packets 
using IXIA PerfectStorm. In the UNSW-NB15 dataset, 
175,341 training data and 82,232 experimental data stored as 
files, and the number of data is shown in Table 1. The 
‘attack_cat’ column shows the type of cyber-attack as 
‘normal’, ‘reconnaissance’, ‘backdoor’, ‘DoS’, ‘exploits’,  

TABLE I.  THE NUMBER OF DATA IN THE UNSW-NB15 DATASET 

UNSW-

NB15 

Training Set Testing Set Total 

Set Normal Abnormal Normal Abnormal 

Data 
56,000 
(22%) 

119,341 
(46%) 

37,000 
(14%) 

45,332 
(18%) 

257,673 
(100%) 

TABLE II.   NAME AND TYPE OF FEATURES USED IN THE EXPERIMENT 

Name Type Name Type 

dur numeric tcprtt numeric 

spkts numeric synack numeric 

dpkts numeric ackdat numeric 

sbytes numeric smean numeric 

dbytes numeric dmean numeric 

rate numeric trans_depth numeric 

sttl numeric response_body_len numeric 

dttl numeric ct_srv_src numeric 

sload numeric ct_state_ttl numeric 

dload numeric ct_dst_ltm numeric 

sloss numeric ct_src_dport_ltm numeric 

dloss numeric ct_dst_sport_ltm numeric 

sinpkt numeric ct_dst_src_ltm numeric 

dinpkt numeric is_ftp_login numeric 

sjit numeric ct_ftp_cmd numeric 

djit numeric ct_flw_http_mthd numeric 

swin numeric ct_src_ltm numeric 

stcpb numeric ct_srv_dst numeric 

dtcpb numeric is_sm_ips_ports numeric 

dwin numeric   

‘analysis’, ‘fuzzers’, ‘worms’, ‘shellcode’, and ‘generic’. In 
addition, ‘label’ column shows ‘abnormal’ and ‘normal’ 
which means attack or not. 

Data Preprocessing 

For the model, the ‘id’ and ‘attack_cat’ are unnecessary 
for training. So we removed that from the 45 features of the 
UNSW-NB15 dataset and separated the ‘label’ column. At 
this moment, the categorical data ‘proto’, ‘service’, and ‘state’ 
features transformed to the sparse matrix in the process of 
applying one-hot encoder. As the dimension of the input data 
increases, the model may degrade performance due to the 
curse of dimension problem. Thus, we train the model with 39 
features excluding the ‘id’, ‘attack_cat’, ‘proto’, ‘service’, and 
‘state’ columns and the 'label' column with correct answers. 
We arranged the names and types of the 39 features used as 
shown in Table 2. Also, we apply the maximal-minimum 
normalization method that can normalize and reduce the 
deviation between each data. 

B. Stacked Sparse Autoencoder and DeepCNN 

SSAE is an unsupervised learning model with the same 
number of units in the input layer and the output layer. 
However, the number of units in the hidden layers may differ 
from the number of units in the input layer. Because the 
encoder transforms the dimension of the input vectors. If the 
input vectors are completely random without correlation, the 
compression is very difficult. However, if the training data has 
a related structure, SSAE can easily generate new feature 
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vectors that can reconstruct the original vectors in the hidden 
layer. 

Figure 1 shows the SSAE-DeepCNN model that we 
proposed in this study. Also, Figure 2 shows the general 
structure of stacked autoencoder (SAE) and the middle layer 
of SAE is called coding layer or bottleneck. In [13], the author 
sets the sparse factor (ρ) parameter to 0.05 to apply the 
sparsity constraints in the coding layer. Informally, the author 
assumed that a neuron is active if its output value is close to 
one, and if its output value is close to zero, the neuron is 
inactive. The author would like to constrain the neurons to be 
inactive most of the time. The author sets ρ to 0.05 to disable 
any hidden units. If the average activation value of the hidden 
unit is close to zero, we can apply the sparsity constraints. For 
the average activation value of hidden units to be close to zero, 
the most activation values must be close to zero. To satisfy 
these conditions, the author used a loss function based on 
Kullback-Leibler divergence. When the distributions of the 
two data are different, the KL-divergence function can 
prevent the activation value from increasing by adding a 
penalty. If the value of ρ increases, the number of activated 
neurons increases. 

We use the L1 regularization instead of the Kullback-
Leibler divergence loss function in the coding layer. The L1 
regularization can reduce the value of the weight to make it 
zero. The regularization factor (λ) means the degree to which 

the weight value decreases. As λ increases, the weight value 
decreases more, and the number of activated neurons 
decreases. If λ is too large, even the necessary weight value 
becomes zero, so it is important to choose an appropriate λ 
value. The structure of the proposed model is that transmits 
the feature vectors generated by adding sparsity constraints in 
the coding layer. 

Figure 3 shows the DeepCNN model we propose in this 
paper. DeepCNN is a model in which two 1D-CNN layers, 
MaxPooling, BatchNormalization, and Dropout layers 
stacked four times as a bundle. It classifies whether it is a 
normal packet or an abnormal packet through the flatten layer 
and three dense layers. The MaxPooling layer extracts vectors 
from the weights calculated by the 1D-CNN layer with the 
convolution layer. As the number of layers increases, the input 
vector becomes increasingly irrelevant from the first input 
vector. To solve this problem, we adjust the mean and 
variance of the input vector through the BatchNormalization 
layer. Also, we set the Dropout layer to 0.3 to solve the 
overfitting problem. The filter sizes of the 1D-CNN layers are 
64, 64, 32, 32, 16, 16, 8, and 8, respectively. Also, in Figure 
3, only the leftmost 1D-CNN layer has a kernel size of six, 
and the others are the same as three. 

 

 

 

Fig. 1. Structure of SSAE-DeepCNN 

Fig. 1  Structure of SAE 

Fig. 3. Structure of DeepCNN 
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TABLE III.  EXPERIMENTS SCENARIO ACCORDING TO THE 

STRUCTURE OF SSAE 

Model 
Test 

scenario 

# of 

layers 

Layer 

structure 

Regularization 

factor (λ) 

DeepCNN (A) N/A N/A N/A 

SSAE-

DeepCNN 

(B) 3 [39, 78, 39] 

1e − 3 

(C) 5 
[39, 78, 

156, 78, 39] 

 (D) 7 
[39, 78, 
156, 312, 

156, 78, 39] 

(E) 9 

[39, 78, 

156, 312, 
624, 312, 

156, 78, 39] 

(F) 3 [39, 33, 39] 

(G) 5 
[39, 33, 30, 

33, 39] 

(H) 7 
[39, 33, 30, 
27, 30, 33, 

39] 

(I) 9 
[39, 33, 30, 
27, 24, 27, 

30, 33, 39] 

(J) 3 [39, 78, 39] 

1e − 5 

(K) 5 
[39, 78, 

156, 78, 39] 

(L) 7 
[39, 78, 
156, 312, 

156, 78, 39] 

(M) 9 

[39, 78, 

156, 312, 
624, 312, 

156, 78, 39] 

(N) 3 [39, 33, 39] 

(O) 5 
[39, 33, 30, 
33, 39] 

(P) 7 
[39, 33, 30, 
27, 30, 33, 

39] 

(Q) 9 
[39, 33, 30,  
27, 24, 27, 

30, 33, 39] 

 ����	
�� =
���

���������
  (1) 

 ���
�� =
�

����
 (2) 

 �	������� =
�

����
 (3) 

 �1– ���	� = 2 ×
� !"#$#%&×'!"())

� !"#$#%&�'!"())
 (4) 

TABLE IV.  SYSTEM SPECIFICATION 

Device Specification 

OS Ubuntu 18.04.1 

CPU Intel(R) Xeon(R) E3-1275 3.60GHz 

RAM pc4-2133 16GB * 2ea 

GPU NVIDIA RTX 2080 super 8G 

 
1psutil, https://psutil.readthedocs.io/ 

 

The strides size of all 1D-CNN layers is 1 In Figure 3, the 

number of units in the two dense layers located on the right 

side of the model is 256 and 128, respectively. And the 

rightmost Dense layer has one unit and performs binary 

classification using the sigmoid activation function.  

IV. EXPERIMENTS SETUP AND EVALUATION RESULTS 

A. Experimental Setup 

We perform experiments as shown in Table 3 to evaluate 
and analyze the performance of the proposed SSAE-
DeepCNN model. We compare the test scenarios according to 
the feature vectors generated by SSAE and the classification 
performance of the proposed model. The values of each 
regularization factor (λ) are 1e − 3  and 1e − 5 . For all 
regularization factors, we experiments by change the number 
and units of hidden layers constituting SSAE. We measure the 
accuracy and F1-Score to compare the performance of each 
test scenario. Also, we measure prediction time, GPU usage, 
memory usage, and CPU utilization to compare efficiency. 
The method of calculating the accuracy and F1-Score is as 
Equations (1)–(4). True positive (TP) is a correct prediction 
of a positive as positive, and false positive (FP) is an incorrect 
prediction of an negative answer as positive. True negative 
(TN) means a correct prediction that a negative is negative 
and false negative (FN) means an incorrect prediction that a 
positive is negative. Table 4 shows the specification of the 
system for experiments. 

B. Experimental Comparison  

Figures 4 and 5 show the experimental results according 
to the structure of SSAE. Figure 4 shows the experimental 
results when the regularization factor is 1e − 3. In Figure 4 
(a), test scenario (A) achieved the best accuracy with 93.1%, 
and test scenario (D) performed the lowest accuracy with 
90.4%. As for the F1-Score, the test scenarios (A), (B), and 
(C) achieved the highest at 94.5%, and the test scenario (D) 
performed the lowest at 92.3%. As for the CPU utilization, 
test scenario (A) used the most with 186.6% and test scenario 
(E) used the least with 169%. We measured CPU utilization 
using python library1 . If the process operates multiple threads 
on the different CPU cores, the CPU utilization can be over 
100%. 

In Figure 4 (b), the prediction time of the test scenario (A) 
showed the fastest at 4.5 seconds and the test scenario (E) 
showed the slowest at 6.2 seconds. Figure 4 (c) shows the 
GPU usage and memory usage. The test scenario (C) used the 
GPU most with 6,755MB, and the test scenario (I) used the 
GPU least with 695MB. As for the memory usage, test 
scenario (E) used the most at 123.4 MB, and test scenario (H) 
used the least at 0.5MB. 

Figure 5 shows the experimental results when the 
regularization factor is 1e − 5. In Figure 5 (a), test scenario 
(M) achieved the best accuracy with 93.5%, and test scenario 
(P) performed the lowest accuracy with 91.4%. As for the F1-
Score, the test scenario (M) achieved the highest with 94.5%, 
and the test scenario (P) performed the lowest with 93.1%. As 
for the CPU utilization, test scenario (A) used the most with  
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(A) (B) (C) (D) (E) (F) (G) (H) (I)

Accuracy 93.1 93 92.9 90.4 92 92.5 92.2 91.7 91.6

F1-Score 94.5 94.5 94.5 92.3 93.8 94.2 93.8 93.5 93.4

CPU utilization 186.6 182.7 178.1 178.7 169 183.2 179.2 179.4 178.7
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Fig. 4. Experimental results of 9 test scenarios (* = 1e − 3) including DeepCNN; (a) The results of the test scenarios (A)–(I); (b) The prediction time 

of the test scenarios (A)–(I); (c) Hardware resources usage of the test scenarios (A)–(I). 
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Fig. 5. Experimental results of 9 test scenarios (* = 1e − +) including DeepCNN; (a) The results of the test scenarios (A) and (J)¬(Q); (b) The prediction 

time of the test scenarios (A) and (J)¬(Q); (c) Hardware resources usage of the test scenarios (A) and (J)¬(Q); 
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186.6% and test scenario (M) used the least with 171.9%. In 
Figure 5 (b), the prediction time of the test scenario (A) 
showed the fastest at 4.5 seconds and the test scenario (K) 
showed the slowest at 6.6 seconds. Figure 5 (c) shows the 
GPU usage and memory usage. The test scenario (K) used the 
GPU most with 6,755MB and the test scenario (Q) used the 
GPU least with 695MB. As for the memory usage, the test the 
test scenario (M) used the most at 123.2MB, and the test 
scenario (Q) used the memory least with 0.8MB. 

We found an interesting correlation between performance 
and resource consumption according to the number of hidden 
units through experiments. If the number of hidden units is 
smaller than the number of features in the original data, the 
accuracy of the model decreases. However, it was able to save 
the hardware resources. On the one hand, whenever the 
number of hidden units doubled, the accuracy increased while 
the CPU utilization decreased. Through the test scenarios 
(D)–(I)  and (L)–(Q), the GPU usage used more according to 
the number of hidden units. However, the model with the 
number of 624 hidden units consumed the GPU usage more 
than the model with the number of 36 hidden units. However, 
we found interesting results when the number of hidden units 
was 156, and the GPU usage increased about eight times 
compared to when there were 624 hidden units. Also, we 
found that the memory usage of a model with SSAE used 
more than without it. Through experimental results, SSAE 
consumes memory usage more. Instead, it helps to save GPU 
and CPU resources. In addition, the new feature vectors that 
SSAE generated can help to improve the classification 
accuracy of the model. Also, when the regularization factor 
was 1e − 5, the model performance was higher than that of 
1e − 3. Therefore, it is important to find an appropriate SSAE 
regularization factor for improving model performance. 

V. CONCLUSION 

In this paper, we proposed the SSAE-DeepCNN model 
that efficiently detects network intrusion threats using the 
UNSW-NB15 dataset. SSAE-DeepCNN model creates new 
feature vectors of training data with SSAE, and DeepCNN 
learns the new feature vectors to classify normal packets or 
abnormal packets. In the experimental result, SSAE generated 
significantly new feature vectors, where the number of hidden 
units increases more than decrease. This is because SSAE 
created new feature vectors that the model can classify a new 
data by adding sparsity constraints to the original data. 
DeepCNN effectively learned and classified new feature 
vectors generated by SSAE using multiple filters. Therefore, 
in this paper, SSAE transmits new feature vectors composed 
of significant features to DeepCNN by increasing the 
dimension of the input data and adding sparsity. When the 
regularization factor is 1e − 5, SSAE-DeepCNN showed the 
highest accuracy of 93.5% and F1-Score of 94.9%. The 
performance of the SSAE-DeepCNN model was slightly 
higher than that of a DeepCNN model. In addition, we found 
an interesting correlation between performance and hardware 
consumption due to the structure of SSAE. 

We plan to study a our model to enable multi-
classification by considering various problems such as a 
method to appropriately preprocess categorical data excepted 
in this study or an oversampling method to solve the 
unbalanced data problem. In addition, we plan to evaluate the 
performance of the model not only with the UNSW-NB15 
dataset but also with various and comprehensive training 

datasets based on user profiles for network intrusion 
detection. 
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