
SSAE – DeepCNN Model for Network Intrusion

Detection

Jong-Hwa Lee

Dept. of Computer Science

Kangwon National Univ.

Chuncheon, Republic of Korea
jonghwalee@kangwon.ac.kr

Jong-Wouk Kim

IGP. in Medical Bigdata Convergence

Kangwon National Univ.

Chuncheon, Republic of Korea
jw.kim@kangwon.ac.kr

Mi-Jung Choi

Dept. of Computer Science/

IGP. In Medical Bigdata Convergence

Kangwon National Univ.

Chuncheon, Replublic of Korea
mjchoi@kangwon.ac.kr

Abstract— Many people can use user-friendly internet

services due to the development of IT and communication

technologies. However, attackers perform attacks such as

malware injection, DoS/DDoS, and system hacking to threaten

end devices, personal information, and organizational assets.

Security experts use anti-cyber-attack systems such as firewalls,

anti-virus solutions, and intrusion detection systems (IDSs) to

defend against various cyber threats. Also, many researchers

work actively on machine learning-based detection models to

protect and respond against advanced cyber-attacks. Therefore,

we propose the stacked sparse autoencoder-deep convolutional

neural network (SSAE-DeepCNN) model to detect network

intrusions. Our proposed model is a semi-supervised learning

model that combines stacked sparse autoencoder (SSAE) and

deep convolutional neural network (DeepCNN). SSAE

discovers new features from training data, and DeepCNN learns

new features to detect network intrusions. We design various

test scenarios to find the hyperparameters and structures of

SSAE with the highest performance. We measure accuracy, F1-

Score, prediction time, and hardware resource consumption to

evaluate and compare models. The best scenario shows an

accuracy of 93.5% by adding sparsity to SSAE's bottleneck.

There is no significant difference in performance compared to

when SSAE is not used, but resources used by GPU and CPU

can be saved. In the future, we plan to improve the proposed

model to get better performance.

Keywords—SSAE, DeepCNN, IDS, Deep learning, Semi-

supervised learning, Sparsity

I. INTRODUCTION

Many companies provide various internet services such as
online shopping and mobile banking. Individuals take
advantage of these services using various devices. Al-Qatf et
al. [1] estimate that there will be 50 billion Internet-connected
devices by 2022. For these services, mobiles and IoT devices
collect and store user information. Attackers perform various
cyber-attacks such as DoS/DDoS, malware injection, and
side-channel attacks to steal this information and block the
services [2]. Therefore, network security is very important in
order to protect assets from various threats [3]. Security
experts detect and defend various threats by employing
firewalls, anti-virus solutions, and intrusion detection system
(IDS). Among these systems, IDS automatically detects
malicious behavior that violates security policies in networks.
However, IDS challenges low accuracy and false alarm rate
against the latest threats [4, 5]

There are two types of IDS: network-based IDS (NIDS)
and host-based IDS (HIDS) depending on the source of
information [6, 7]. NIDS monitors all packets on the network
and HIDS monitors all host behavior. Both NIDS and HIDS
can take signature-based or anomaly-based approach as a
detection method. Signature-based IDS can detect well-
known malware and attacks according to the patterns.
However, it is difficult to detect unknown malware or zero-

day attacks. On the other hand, anomaly-based IDS analyzes
all packets to detect malicious behavior. Sometimes, this
happens false positive and false negative alarms. To solve
these problems, many researchers study IDS with ML
machine learning (ML) and deep learning (DL).

ML is divided into three categories according to the
learning method: supervised learning, unsupervised learning,
and reinforcement learning. In supervised learning, each
training samples consist of an input vector and an output
(target) data. A supervised learning model trains the training
samples and predicts the output vector from new samples. On
the other hand, unsupervised learning performs data
clustering or analyzes correlations using unlabeled data [8].
Reinforcement learning is a subcategory of machine learning
that determines the next decision to obtain the best reward [9].
In particular, supervised learning is more dependent on
training data than other methods. In supervised learning
model, overfitting occurs when the model learns the details
and even noise of training samples. If the model learns the
training data too accurately, it can negatively affect the
performance of the model on new data. Conversely, under-
fitting means that the model cannot learn the training data or
generalize new data. Therefore, preprocessing such as
numericalization, normalization, and dimension reduction is
important in supervised learning to avoid such problems.

In this paper, we propose a machine learning model for
intrusion detection in the network. Our proposed model is an
stacked sparse autoencoder-deep convolutional neural
network (SSAE-DeepCNN) model which combines
supervised and unsupervised learning. Stacked sparse
autoencoder (SSAE) consists of an encoder that transforms
data and a decoder that reconstructs transformed data. In the
encoder, the last layer generates new features by applying the
sparsity constraints to the data. Deep convolutional neural
network (DeepCNN), composed of multiple 1D-CNN layers,
classifies the output vector from the transformed data
generated by SSAE.

This paper is organized as follows. Section 2 summarizes
the related work on IDS, SSAE and CNN. Section 3 describes
our proposed model. Section 4 explains the experimental
setup, and evaluates the performance of SSAE-DeepCNN
through the experiments. Finally, Section 5 concludes the
paper.

II. RELATED WORK

A. IDS

The growing rate of cyber-attacks on system networks in
recent years has weakened the privacy and security of
computer infrastructure and personal computers. Many
researchers work on how to enhance the performance of IDS
using ML and DL. Parkar et al. [10] introduce five problems
faced by the IDS field applying ML and DL. The first problem

©Copyright IEICE - APNOMS 2021 78

is difficult to generalize a normal state of traffic. This is
because every session shows diverse traffic usage. Second,
the misclassification results of the model will be enormous to
fix it. In particular, a false negative is very sensitive. Because
an undetected attack can break down an entire system. Third,
there is a major difference of opinion between analysts and
operators. In terms of detecting malicious behavior and
detecting attacks, it may mismatch the requirements. Fourth,
it is difficult to detect malicious behavior due to various traffic
types. Finally, a public dataset is very few to advance the
performance of the model and evaluate the model. The
authors proposed choosing an appropriate learning method or
data according to the purpose of using the IDS.

B. Stacked Sparse Autoencoder

Autoencoder is one approach to automatically learn
features from unlabeled data. Autoencoder consists of input,
hidden, and output layers. The encoder transforms an input
vector into an abstract vector using a combination of input and
hidden layers. The decoder reconstructs (or recovers) the
abstract vector into the original input vector using a
combination of the hidden layers and the output layer [11, 12,
13]. SSAE belongs to one category of autoencoder. SSAE
applies sparsity constraints to the hidden layers to obtain
meaningful new feature vectors.

Zhang et al. proposed Xgboost-based SSAE to learn
meaningful feature vectors of NSL-KDD dataset. In addition,
the model using the binary tree and ensemble method showed
a F1-Score of 91.97%. Yan et al. described that feature
extraction is important to accurately classify network traffic
as high-dimensional data with ML. Therefore, the authors
used SSAE to generate meaningful feature vectors of the
NSL-KDD dataset. As a result, the support vector machine
(SVM) learned the significant feature vectors that SSAE
generated and showed an accuracy of 99.35% and a
classification speed of 3.29 seconds

C. Convolutional Neural Network

CNN uses the mechanism by which the brain processes
visual information. CNN automatically learns complex
vectors from images using an extraction filter called a kernel.
Azizjon et al. [14] roposed a 1D-CNN-based intrusion
detection model for network intrusion detection. 1D-CNN
processing one-dimensional vector showed the best accuracy
of 91.2% and a F1-Score of 91.59%. Wu et al. [15] proposed
the LuNet model, a hierarchical neural network, combining
CNN and recurrent neural network (RNN) for network
intrusion detection. The authors trained the LuNet model
using the NSL-KDD and UNSW-NB15 datasets. In the
experimental results, the LuNet model showed accuracies of
97.4% and 97.7% for binary classification, and 99.1% and
85.0% for multi-class classification.

III. DESIGN OF MACHINE LEARNING MODEL FOR

 INTRUSION DETECTION

A. UNSW-NB15 dataset

In this study, we use the UNSW-NB15 dataset. The
UNSW-NB15 dataset is a public dataset created by Cyber
Range Lab by collecting and processing network packets
using IXIA PerfectStorm. In the UNSW-NB15 dataset,
175,341 training data and 82,232 experimental data stored as
files, and the number of data is shown in Table 1. The
‘attack_cat’ column shows the type of cyber-attack as
‘normal’, ‘reconnaissance’, ‘backdoor’, ‘DoS’, ‘exploits’,

TABLE I. THE NUMBER OF DATA IN THE UNSW-NB15 DATASET

UNSW-

NB15

Training Set Testing Set Total

Set Normal Abnormal Normal Abnormal

Data
56,000
(22%)

119,341
(46%)

37,000
(14%)

45,332
(18%)

257,673
(100%)

TABLE II. NAME AND TYPE OF FEATURES USED IN THE EXPERIMENT

Name Type Name Type

dur numeric tcprtt numeric

spkts numeric synack numeric

dpkts numeric ackdat numeric

sbytes numeric smean numeric

dbytes numeric dmean numeric

rate numeric trans_depth numeric

sttl numeric response_body_len numeric

dttl numeric ct_srv_src numeric

sload numeric ct_state_ttl numeric

dload numeric ct_dst_ltm numeric

sloss numeric ct_src_dport_ltm numeric

dloss numeric ct_dst_sport_ltm numeric

sinpkt numeric ct_dst_src_ltm numeric

dinpkt numeric is_ftp_login numeric

sjit numeric ct_ftp_cmd numeric

djit numeric ct_flw_http_mthd numeric

swin numeric ct_src_ltm numeric

stcpb numeric ct_srv_dst numeric

dtcpb numeric is_sm_ips_ports numeric

dwin numeric

‘analysis’, ‘fuzzers’, ‘worms’, ‘shellcode’, and ‘generic’. In
addition, ‘label’ column shows ‘abnormal’ and ‘normal’
which means attack or not.

Data Preprocessing

For the model, the ‘id’ and ‘attack_cat’ are unnecessary
for training. So we removed that from the 45 features of the
UNSW-NB15 dataset and separated the ‘label’ column. At
this moment, the categorical data ‘proto’, ‘service’, and ‘state’
features transformed to the sparse matrix in the process of
applying one-hot encoder. As the dimension of the input data
increases, the model may degrade performance due to the
curse of dimension problem. Thus, we train the model with 39
features excluding the ‘id’, ‘attack_cat’, ‘proto’, ‘service’, and
‘state’ columns and the 'label' column with correct answers.
We arranged the names and types of the 39 features used as
shown in Table 2. Also, we apply the maximal-minimum
normalization method that can normalize and reduce the
deviation between each data.

B. Stacked Sparse Autoencoder and DeepCNN

SSAE is an unsupervised learning model with the same
number of units in the input layer and the output layer.
However, the number of units in the hidden layers may differ
from the number of units in the input layer. Because the
encoder transforms the dimension of the input vectors. If the
input vectors are completely random without correlation, the
compression is very difficult. However, if the training data has
a related structure, SSAE can easily generate new feature

©Copyright IEICE - APNOMS 2021 79

vectors that can reconstruct the original vectors in the hidden
layer.

Figure 1 shows the SSAE-DeepCNN model that we
proposed in this study. Also, Figure 2 shows the general
structure of stacked autoencoder (SAE) and the middle layer
of SAE is called coding layer or bottleneck. In [13], the author
sets the sparse factor (ρ) parameter to 0.05 to apply the
sparsity constraints in the coding layer. Informally, the author
assumed that a neuron is active if its output value is close to
one, and if its output value is close to zero, the neuron is
inactive. The author would like to constrain the neurons to be
inactive most of the time. The author sets ρ to 0.05 to disable
any hidden units. If the average activation value of the hidden
unit is close to zero, we can apply the sparsity constraints. For
the average activation value of hidden units to be close to zero,
the most activation values must be close to zero. To satisfy
these conditions, the author used a loss function based on
Kullback-Leibler divergence. When the distributions of the
two data are different, the KL-divergence function can
prevent the activation value from increasing by adding a
penalty. If the value of ρ increases, the number of activated
neurons increases.

We use the L1 regularization instead of the Kullback-
Leibler divergence loss function in the coding layer. The L1
regularization can reduce the value of the weight to make it
zero. The regularization factor (λ) means the degree to which

the weight value decreases. As λ increases, the weight value
decreases more, and the number of activated neurons
decreases. If λ is too large, even the necessary weight value
becomes zero, so it is important to choose an appropriate λ
value. The structure of the proposed model is that transmits
the feature vectors generated by adding sparsity constraints in
the coding layer.

Figure 3 shows the DeepCNN model we propose in this
paper. DeepCNN is a model in which two 1D-CNN layers,
MaxPooling, BatchNormalization, and Dropout layers
stacked four times as a bundle. It classifies whether it is a
normal packet or an abnormal packet through the flatten layer
and three dense layers. The MaxPooling layer extracts vectors
from the weights calculated by the 1D-CNN layer with the
convolution layer. As the number of layers increases, the input
vector becomes increasingly irrelevant from the first input
vector. To solve this problem, we adjust the mean and
variance of the input vector through the BatchNormalization
layer. Also, we set the Dropout layer to 0.3 to solve the
overfitting problem. The filter sizes of the 1D-CNN layers are
64, 64, 32, 32, 16, 16, 8, and 8, respectively. Also, in Figure
3, only the leftmost 1D-CNN layer has a kernel size of six,
and the others are the same as three.

Fig. 1. Structure of SSAE-DeepCNN

Fig. 1 Structure of SAE

Fig. 3. Structure of DeepCNN

©Copyright IEICE - APNOMS 2021 80

TABLE III. EXPERIMENTS SCENARIO ACCORDING TO THE

STRUCTURE OF SSAE

Model
Test

scenario

of

layers

Layer

structure

Regularization

factor (λ)

DeepCNN (A) N/A N/A N/A

SSAE-

DeepCNN

(B) 3 [39, 78, 39]

1e − 3

(C) 5
[39, 78,

156, 78, 39]

 (D) 7
[39, 78,
156, 312,

156, 78, 39]

(E) 9

[39, 78,

156, 312,
624, 312,

156, 78, 39]

(F) 3 [39, 33, 39]

(G) 5
[39, 33, 30,

33, 39]

(H) 7
[39, 33, 30,
27, 30, 33,

39]

(I) 9
[39, 33, 30,
27, 24, 27,

30, 33, 39]

(J) 3 [39, 78, 39]

1e − 5

(K) 5
[39, 78,

156, 78, 39]

(L) 7
[39, 78,
156, 312,

156, 78, 39]

(M) 9

[39, 78,

156, 312,
624, 312,

156, 78, 39]

(N) 3 [39, 33, 39]

(O) 5
[39, 33, 30,
33, 39]

(P) 7
[39, 33, 30,
27, 30, 33,

39]

(Q) 9
[39, 33, 30,
27, 24, 27,

30, 33, 39]

 ����	
�� =
���

���������
 (1)

 ���
�� =
�

����
 (2)

 �	������� =
�

����
 (3)

 �1– ���	� = 2 ×
� !"#$#%&×'!"())

� !"#$#%&�'!"())
 (4)

TABLE IV. SYSTEM SPECIFICATION

Device Specification

OS Ubuntu 18.04.1

CPU Intel(R) Xeon(R) E3-1275 3.60GHz

RAM pc4-2133 16GB * 2ea

GPU NVIDIA RTX 2080 super 8G

1psutil, https://psutil.readthedocs.io/

The strides size of all 1D-CNN layers is 1 In Figure 3, the

number of units in the two dense layers located on the right

side of the model is 256 and 128, respectively. And the

rightmost Dense layer has one unit and performs binary

classification using the sigmoid activation function.

IV. EXPERIMENTS SETUP AND EVALUATION RESULTS

A. Experimental Setup

We perform experiments as shown in Table 3 to evaluate
and analyze the performance of the proposed SSAE-
DeepCNN model. We compare the test scenarios according to
the feature vectors generated by SSAE and the classification
performance of the proposed model. The values of each
regularization factor (λ) are 1e − 3 and 1e − 5 . For all
regularization factors, we experiments by change the number
and units of hidden layers constituting SSAE. We measure the
accuracy and F1-Score to compare the performance of each
test scenario. Also, we measure prediction time, GPU usage,
memory usage, and CPU utilization to compare efficiency.
The method of calculating the accuracy and F1-Score is as
Equations (1)–(4). True positive (TP) is a correct prediction
of a positive as positive, and false positive (FP) is an incorrect
prediction of an negative answer as positive. True negative
(TN) means a correct prediction that a negative is negative
and false negative (FN) means an incorrect prediction that a
positive is negative. Table 4 shows the specification of the
system for experiments.

B. Experimental Comparison

Figures 4 and 5 show the experimental results according
to the structure of SSAE. Figure 4 shows the experimental
results when the regularization factor is 1e − 3. In Figure 4
(a), test scenario (A) achieved the best accuracy with 93.1%,
and test scenario (D) performed the lowest accuracy with
90.4%. As for the F1-Score, the test scenarios (A), (B), and
(C) achieved the highest at 94.5%, and the test scenario (D)
performed the lowest at 92.3%. As for the CPU utilization,
test scenario (A) used the most with 186.6% and test scenario
(E) used the least with 169%. We measured CPU utilization
using python library1 . If the process operates multiple threads
on the different CPU cores, the CPU utilization can be over
100%.

In Figure 4 (b), the prediction time of the test scenario (A)
showed the fastest at 4.5 seconds and the test scenario (E)
showed the slowest at 6.2 seconds. Figure 4 (c) shows the
GPU usage and memory usage. The test scenario (C) used the
GPU most with 6,755MB, and the test scenario (I) used the
GPU least with 695MB. As for the memory usage, test
scenario (E) used the most at 123.4 MB, and test scenario (H)
used the least at 0.5MB.

Figure 5 shows the experimental results when the
regularization factor is 1e − 5. In Figure 5 (a), test scenario
(M) achieved the best accuracy with 93.5%, and test scenario
(P) performed the lowest accuracy with 91.4%. As for the F1-
Score, the test scenario (M) achieved the highest with 94.5%,
and the test scenario (P) performed the lowest with 93.1%. As
for the CPU utilization, test scenario (A) used the most with

©Copyright IEICE - APNOMS 2021 81

(A) (B) (C) (D) (E) (F) (G) (H) (I)

Accuracy 93.1 93 92.9 90.4 92 92.5 92.2 91.7 91.6

F1-Score 94.5 94.5 94.5 92.3 93.8 94.2 93.8 93.5 93.4

CPU utilization 186.6 182.7 178.1 178.7 169 183.2 179.2 179.4 178.7

160

165

170

175

180

185

190

84

86

88

90

92

94

96

98

100

C
P

U
 u

ti
li

za
ti

o
n
 (

%
)

P
er

fo
rm

an
ce

(%
)

4.5
5.4 5.6 6.0 6.2

5.3 5.7 5.5 5.7

0

2

4

6

8

(A) (B) (C) (D) (E) (F) (G) (H) (I)

T
im

e
(s

)

Prediction time

0

50

100

150

0
1000
2000
3000
4000
5000
6000
7000

(A) (B) (C) (D) (E) (F) (G) (H) (I)

M
em

o
ry

 u
sa

g
e

(M
B

)

G
P

U
 u

sa
g
e

(M
B

)
GPU usage when training

Memory usage when classifying

Fig. 4. Experimental results of 9 test scenarios (* = 1e − 3) including DeepCNN; (a) The results of the test scenarios (A)–(I); (b) The prediction time

of the test scenarios (A)–(I); (c) Hardware resources usage of the test scenarios (A)–(I).

(a)

(b) (c)

Fig. 5. Experimental results of 9 test scenarios (* = 1e − +) including DeepCNN; (a) The results of the test scenarios (A) and (J)¬(Q); (b) The prediction

time of the test scenarios (A) and (J)¬(Q); (c) Hardware resources usage of the test scenarios (A) and (J)¬(Q);

(A) (J) (K) (L) (M) (N) (O) (P) (Q)

Accuracy 93.1 92.7 92.8 93.1 93.5 92.2 91.6 91.4 91.8

F1-Score 94.5 94.2 94.3 94.6 94.9 93.9 93.5 93.1 93.6

CPU utilization 186.6 179.7 174.6 181.6 171.9 181.9 181.7 180.0 176.9

160

165

170

175

180

185

190

84

86

88

90

92

94

96

98

100

C
P

U
 u

ti
li

za
ti

o
n
 (

%
)

P
er

fo
rm

an
ce

 (
%

)

4.5
5.5

6.6

5.4
6.4

5.4 5.6 5.7 5.8

0

2

4

6

8

(A) (J) (K) (L) (M) (N) (O) (P) (Q)

T
im

e
(s

)

Prediction time

0

50

100

150

0
1000
2000
3000
4000
5000
6000
7000

(A) (J) (K) (L) (M) (N) (O) (P) (Q)

M
em

o
ry

 u
sa

g
e

(M
B

)

G
P

U
 u

sa
g
e

(M
B

)

Train GPU usage(MB)

Predict memory usage(MB)

(a)

(b) (c)

©Copyright IEICE - APNOMS 2021 82

186.6% and test scenario (M) used the least with 171.9%. In
Figure 5 (b), the prediction time of the test scenario (A)
showed the fastest at 4.5 seconds and the test scenario (K)
showed the slowest at 6.6 seconds. Figure 5 (c) shows the
GPU usage and memory usage. The test scenario (K) used the
GPU most with 6,755MB and the test scenario (Q) used the
GPU least with 695MB. As for the memory usage, the test the
test scenario (M) used the most at 123.2MB, and the test
scenario (Q) used the memory least with 0.8MB.

We found an interesting correlation between performance
and resource consumption according to the number of hidden
units through experiments. If the number of hidden units is
smaller than the number of features in the original data, the
accuracy of the model decreases. However, it was able to save
the hardware resources. On the one hand, whenever the
number of hidden units doubled, the accuracy increased while
the CPU utilization decreased. Through the test scenarios
(D)–(I) and (L)–(Q), the GPU usage used more according to
the number of hidden units. However, the model with the
number of 624 hidden units consumed the GPU usage more
than the model with the number of 36 hidden units. However,
we found interesting results when the number of hidden units
was 156, and the GPU usage increased about eight times
compared to when there were 624 hidden units. Also, we
found that the memory usage of a model with SSAE used
more than without it. Through experimental results, SSAE
consumes memory usage more. Instead, it helps to save GPU
and CPU resources. In addition, the new feature vectors that
SSAE generated can help to improve the classification
accuracy of the model. Also, when the regularization factor
was 1e − 5, the model performance was higher than that of
1e − 3. Therefore, it is important to find an appropriate SSAE
regularization factor for improving model performance.

V. CONCLUSION

In this paper, we proposed the SSAE-DeepCNN model
that efficiently detects network intrusion threats using the
UNSW-NB15 dataset. SSAE-DeepCNN model creates new
feature vectors of training data with SSAE, and DeepCNN
learns the new feature vectors to classify normal packets or
abnormal packets. In the experimental result, SSAE generated
significantly new feature vectors, where the number of hidden
units increases more than decrease. This is because SSAE
created new feature vectors that the model can classify a new
data by adding sparsity constraints to the original data.
DeepCNN effectively learned and classified new feature
vectors generated by SSAE using multiple filters. Therefore,
in this paper, SSAE transmits new feature vectors composed
of significant features to DeepCNN by increasing the
dimension of the input data and adding sparsity. When the
regularization factor is 1e − 5, SSAE-DeepCNN showed the
highest accuracy of 93.5% and F1-Score of 94.9%. The
performance of the SSAE-DeepCNN model was slightly
higher than that of a DeepCNN model. In addition, we found
an interesting correlation between performance and hardware
consumption due to the structure of SSAE.

We plan to study a our model to enable multi-
classification by considering various problems such as a
method to appropriately preprocess categorical data excepted
in this study or an oversampling method to solve the
unbalanced data problem. In addition, we plan to evaluate the
performance of the model not only with the UNSW-NB15
dataset but also with various and comprehensive training

datasets based on user profiles for network intrusion
detection.

ACKNOWLEDGMENT

This research is a basic research project carried out with
the support of the National Research Foundation of Korea
with funding from the government (Ministry of Science and
ICT) in 2020. (NRF-2020R1A2C1012117).

REFERENCES

[1] Majjed Al-Qatf, Mohammed Al-Habib and kamal Al-Sabahi, “Deep

learning approach combining sparse autoencoder with SVM for
netowk intrusion detection,” Journal of IEEE Access, Vol.6, pp.
52843-52856, Sept. 2018.

[2] Yinhao Xiao, Yizhen Jia, Chunchi Liu, Xiuzhen Cheng, Jiguo Yu and
Weifeng Lv, “Edge computing security: state of the art and
challenges,” Journal of Proceedings of the IEEE, Vol. 107, No. 8, pp.
1608-1631, Aug. 2019.

[3] Divaya Kapil, Nidhi Mehra, Atika Gupta, sudhanshu Maurya and
Anupriya Sharma, “Network security: threat model, attacks, and IDS
using machine learning,” In Proc of The International Conference on
Artifical Intelligence and Smart Systems, Coimbatore, India, pp. 203-
208, Mar. 2021.

[4] Sydney Mambwe Kasongo and Yanxia Sun, “A deep learning method
with filter based feature engineering for wireless intrusion detection
system,” Journal of IEEE Aceess, Vol. 7, pp. 38597-38607, Mar. 2019.

[5] Iftikhar Ahmad, Mohammad Basheri, Muhammad Javed Iqbal and
Aneel Rahim, “Performance comparison of support vector machine,
random forest, and extreme learning machine for intrusion detection,”
Journal of IEEE Access, Vol. 6, pp. 33789-33795, May 2018.

[6] Ram kumar Singh and T. Ramajujam, “ Intursion detection system
using advanced honeypots,” Journal of International Journal of
Computer Science and Information Security, Vol. 2, No. 1, pp. 1-9,
June 2009.

[7] Ziadoon Kamil Maseer, Robiah Yusof Nazrulazhar Bahaman, Salama
A. Mostafa and Cik Feresa Mohd Foozy, “Benchmarking of machine
learning for anomaly based intrusion detection systems in the
CICIDS2017 dataset,” Journal of IEEE Access, Vol 9, pp. 22351-
22370, Feb. 2021.

[8] Jesper E. van Engelen and Holger H. Hoos, “A survey on semi-
supervised learning,” Journal of Machine Learning, Vol. 109, No. 2,
pp.373-440, Nov. 2019.

[9] GwiHoon Kim and YongGeun Hong, “Machine learning technology
trends in the network,” Journal of The Korean Institute of
Communication Sciences, Vol. 34, No. 10, pp. 38-44, Sept. 2017.

[10] Prachiti Parkar and Ansh Bilimoria, “A survey on cyber security IDS
using ML methods,” In Proc. of 5th International Conference on
Intelligent Computing and Control Systems, Madurai, India, pp.352-
360 , May 2021.

[11] Joohwa Lee, JuGeon Pak and Myungsuk Lee, “Netowrk intrusion
detection system using feature extraction based on deep sparse
autoencoder,” In Proc. of 2020 International Conference on
information and Communication Technology Convergence, Jeju,
South Korea, pp. 21-23, Oct. 2020.

[12] Baoan Zhang, Yanhua Yu and Jie Li, “Network intrusion detection
bsed on stacked sparse autoencoder and binary tree ensemble method,”
In Proc. of 2018 IEEE International Conference on Communications
Workshops, Kansas City, MO, USA, pp. 1-6, May 2018.

[13] Andrew NG, “Sparse autoencoder,” CS294A Lecutre notes, Vol. 72,
pp. 1-19, 2011.

[14] Meliboev Azizjon, Alikhanov Jurnabek and Wooseong Kim, “1D
CNN based network intrusion detection with normalization on
imbalanced data,” In Proc. of 2020 International Conference on
Artificial Intelligence in Information and Communication, pp. 218–
224, Fukuoka, Japan, Apr. 2020.

[15] Peilun Wu and Hui Guo, “LuNet: a deep nerual network for network
intrusion detection,” In Proc. of 2019 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 617–624, Xiamen, China, Dec.
2019.

©Copyright IEICE - APNOMS 2021 83

