
High Level Synthesis of Neville Interpolation

on an Embedded FPGA Platform using SDSoC

Kyeong-Bin Park1, Jung-Hyun Hong2 and Ki-Seok Chung3

Department of Electronics and Computer Engineering, Hanyang University

Haengdang 1-dong, Seongdong-gu, Seoul, 133-791, Korea

E-mail: 1eurakb@gmail.com, 2 jhhong34@gmail.com, 3kchung@hanyang.ac.kr

Abstract: Today, high-level synthesis (HLS) has emerged as

a widely used method for various digital systems. In this

paper, we propose a the line interpolator implemented on

Xilinx Zynq SoC using a high-level synthesis tool called

Software-Defined SoC (SDSoC). There are lots of iterative

calculations in the line interpolation algorithm; therefore, the

hardware acceleration is preferred over the software-only

implementation. We implement the Neville interpolation

algorithm and apply the loop unrolling and pipelining

techniques to fully utilize the target FPGA. When the

utilization techniques are applied, the area is increased, but

the total execution time is reduced by 10 times. The proposed

implementation using SDSoC shows better performance

compared to the software-only one, and fast design space

exploration is achieved using HLS compared to the

conventional RTL design.

1. Introduction

As technology progresses and systems become rapidly

complex, it has become almost inevitable to use high-level

abstractions and synthesis methods in designing digital

circuits. High-level synthesis (HLS) is the automatic

synthesis of a design structure from a behavioral

specification, at levels above the logic level [1]. The

Software-Defined SoC (SDSoC) development environment

is one of the HLS development tools [2]. SDSoC is designed

to be used mainly for a heterogeneous target platform to

implement embedded systems. One of the biggest

advantages of using SDSoC is that the compiler generates

the complete hardware and software system based on the

user-specified target platform and the required design

functionality through fast design space exploration.

There are lots of iterative calculations in the line

interpolation algorithm; therefore, the hardware acceleration

is preferred over the software-only implementation.

Neville’s algorithm, for example, is one of the popular line

interpolation algorithms, and it uses the prior calculation

results in the following step [4]. In this interpolation

algorithm, initially, the 0th order polynomial for a point is

calculated. Then, the 1st order polynomial for the two points

obtained by the 0th polynomial is extracted. So this algorithm

can extract the nth order polynomial by repeating this process.

In this paper, we propose an implementation of the iterative

Neville interpolation algorithm on the Xilinx Zynq SoC

platform using SDSoC [3].

Since the hardware logic generated by the default

compilation by SDSoC may not meet the performance

requirement, optimization through parallelization and

pipelining should be taken into consideration to achieve the

satisfactory target performance. To improve the performance

of the interpolation, techniques such as loop-unrolling and

loop pipeling have been employed. A detailed description of

the optimizing techniques will be explained in Section 3.

2. Neville Interpolation Algorithm

Interpolation is a method of obtaining an approximate

function from known statistical or experimental data points

(xi’s) and finding new data points by the approximate

function (g(x)) within the range of the known data points.

There are several algorithms such as linear interpolation,

Lagrange interpolation, Neville interpolation and Newton

interpolation, etc. In this paper, we implement the Neville

interpolation algorithm on a Zynq SoC platform using

SDSoC. The Neville interpolation algorithm uses the prior

calculation results in the following step. Equation (1), (2),

and (3) show the order of calculating polynomials in the

Neville interpolation. (1) is used when the number of the

given point is one. (2) is used when the number of the given

points is two, and so on.

𝑔0(x) = 𝑓(𝑥0), 𝑔1(x) = 𝑓(𝑥1), ⋯ (1)

𝑔0,1(x) =
(𝑥−𝑥0)𝑔1(x)−(𝑥−𝑥1)𝑔0(x)

𝑥1−𝑥0
, ⋯ (2)

𝑔0,1,2(x) =
(𝑥−𝑥0)𝑔1,2(x)−(𝑥−𝑥2)𝑔0,1(x)

𝑥2−𝑥0
, ⋯ (3)

3. Implementation of Neville Interpolation

In this paper, the Neville interpolation algorithm is

implemented on a Zynq SoC platform using SDSoC. A

pseudo code of the Neville algorithm is given in Figure 1.

To optimize the hardware logic generated by SDSoC to meet

the performance requirement, the loop unrolling and loop

pipelining techniques to fully utilize the target FPGA are

employed. Loop unrolling is a technique that exploits

parallelism across multiple loop iterations. It creates multiple

copies of the loop body and adjusts the loop iteration counter

accordingly. Loop pipelining is a technique that allows the

operations in a loop to be executed in an overlapping manner

as shown in Figure 2. Without pipelining, six clock cycles

are needed to carry out two consecutive READ operations.

However, with pipelining, it requires only four clock cycles.

The initiation interval (II) is the number of cycles that must

elapse between the start of successive loop iterations.

There is no dependency in the for-loops of the algorithm

shown in Figure 1. Therefore, the loop unrolling and loop

pipelining may be applied using SDSoC pragmas in order to

generate the optimized synthesis results.

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

77

Figure 1. Pseudo-code of the Neville interpolation algorithm

(a) No pipelining

(b) Pipelining

Figure 2. Loop pipelining when the initiation interval is 1

4. Experimental Results

In this paper, we propose a hardware implementation of the

Neville interpolation algorithm on a Zynq SoC plaform. The

Zynq SoC is equipped with a processing system (PS) based

on a dual ARM CortexTM-A9 core and a programmable logic

(PL) with a Xilinx FPGA device in a single chip. PL consists

of configurable logic blocks (look-up tables (LUTs), flip-

flops, and cascadable adders), Block RAM, DSP blocks and

etc. By using PL, behavioral description of a design can be

compiled into the target specific custom hardware.

Figure 3. Performance comparison of interpolators

The interpolator finds 30 interpolated points when the

number of the given points is 10. We compare the

performance and the required hardware area for various

implementations. The number of execution cycles of each

implementation is used for performance comparison and the

required area for each hardware implementation is estimated

based on the utilization number of the LUTs in PL.

Experimental results on performance are shown in Figure 3.

When hardware is not optimized, performance is worse than

the software-only implementation. It is mainly because PL

resources are not efficiently utilized without optimization.

Figure 4 shows area comparison results. The required area of

the fully optimized implementation is more than 5 times

larger than the one without optimization. However, the

performance is improved approximately by 10 times. In

addition, the fully optimized implementation is nearly twice

faster than the software-only one.

Figure 4. Area comparison of hardware implementations

5. Conclusion

We implement the Neville interpolation algorithm on a

Xilinx Zynq SoC platform by using a high-level synthesis

tool called SDSoC. Optimization of hardware

implementation is important to improve the performance of

the synthesized design. There is a trade-off between the

performance and the area when the hardware is optimized.

With optimization applied, the required area increases while

the performance is improved. The proposed Neville

interpolator implementation with the optimization

techniques shows 1.88 times better performance than the

software-only implementation. We conclude that the applied

high-level synthesis method is very effective in finding the

optimal design through fast design space exploration.

References

[1] P. Coussy and A. Morawiec, High-Level Synthesis,

Springer, 2010.

[2] V. Kathail et al, “SDSoC: A Higher-level Programming

Environment for Zynq SoC and Ultrascale+ MPSoC,” in

Proc. of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 4, Feb. 2016.

[3] Xilinx, Processing with the Arm Cortex-A9 on the Xilinx

Zynq-7000 All Programmable Soc, 2016

[4] E. H. Neville, Iterative interpolation, St. Joseph's IS

Press, 1934.++

for(n=0; n<N_pos; n++){ // # of interpolated point
for(i=0; i<REF_point; i++){ // # of given point

#pragma HLS unroll factor= REF_point

#pragma HLS pipeline II=1
g[0] = y_ref[i];
for(j=i, k=1; j>=1; j--, k++){

output[n] = calculation using upon equation;

 g[i-j+1] = output[n];
}

for(j=0; j<=i; j++) g_present[j] = g[j];

}

}

78

http://dl.acm.org/citation.cfm?id=2847284
http://dl.acm.org/citation.cfm?id=2847284

