

Implementation of a DMAC using SystemC

Young-Jin Oh, Byeong-Deok Kim, Myoung-Keun You, Gi-Yong Song

School of Electrical and Computer Engineering

Chungbuk National University, Cheongju Chungbuk, 361-763, Korea
E-mail : goodmen913@chungbuk.ac.kr, haracan@chungbuk.ac.kr, mkyou77@chungbuk.ac.kr, gysong@chungbuk.ac.kr

Abstract : Recently, SystemC has been stressed in
system-level design methodology because of the capability
of system architectural model description and co-design
hardware and software design. Also SystemC has many
features on modeling as well as verification. DMA is an
essential feature of modern systems. It improves
performance of system and decreases CPU overhead. This
paper describes an implementation of a DMAC using
SystemC and compares performance in each channel and
each system-level. By comparison of performances, we
found out a proper abstraction level model for system-level
design.

1. Introduction

As the design of a system level gets more complex and
larger, the expressing design and verification on a high level
becomes important than ever. The disparity between chip
complexity, measured by the number of transistors on a
silicon chip and design productivity, measured by the
number of transistors for designers to handle per day
indicates that semiconductor industry will be able to
manufacture complex chip beyond our ability to design
those chips in any reasonable time to market. The most
obvious solution for narrowing the productivity gap is to
implement a SoC(system-on-a-chip) by raising the level of
abstraction in design [1-2].

The importance of SystemC which models the system on
a high abstraction level has recently been stressed in system
design. SystemC provides an event-based simulation kernel
and C/C++class library for hardware modeling, and
co-design environment for software and hardware modules.
Also it provides the concepts such as channels, interfaces,
ports and events for communication between modules [3-4].

Being built on standard C/C++ language, the SystemC
describes functionality and communication at various
abstraction and allows modeling range from system level to
RTL(Register Transfer Level). The target system and
sub-system communication and functionality can be
developed and refined independently in un-timed,
approximately-timed, or cycle-timed model.

This paper designs a DMAC(direct memory access
controller) using SystemC in several abstraction levels and
compare performances of DMAC in each level.
Sub-modules of DMAC are progressive refined from system
architectural model to finite state machine in the viewpoint
of functionality, and interconnections between sub-modules
are refined from a sc_fifo channel to a bus channel which
implements a communication protocol using sc_buffer
channels.

2. Preliminary

2.1 SystemC

SystemC [1-6] is a C/C++ class library and a methodology
that we can use to effectively create a cycle-accurate model
of a given algorithm, hardware architecture, and interface of
SoC and system-level design. So system designer can write
the design and verify it using the same language, and further
refine it all the way to the implementation level.
The SystemC design flow is shown in Fig. 1.

Fig. 1. SytemC design flow

 SystemC supports RTL modeling simulation and

synthesis, a major reason for using the language is to design
at higher abstraction level than RTL, hardware-software
co-design, and description of the architecture of complex
systems consisting of both hardware, software, and
interfaces in a C++ environment. A system designer need
only write a model using SystemC.

 SystemC provides several advantages that it can
understand the design/system specification, create
performance models of the system and validate the system
performance and refine and reuse testbench at the higher
level down to the implantation level. We iteratively refine
the executable specification down to the RTL prior to

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

777

synthesis, which is still in SystemC. The testbench which is
written in SystemC is reused to ensure that the iterative
refinements of the SystemC model did not introduce errors.

SystemC supports co-design and description of the
architecture of complex systems consisting of both hardware
and software. It allows a hierarchical structure because a
module can have other modules or processes in it. Process
communicate with other via interfaces, channels, and ports,
and synchronize via events. Also SystemC has event-driven
simulation kernel which offers fast simulation.

2.2 DMAC

The processor of a system must communicate with memory
and with a wide range of I/O devices, from slow devices to
high-speed devices. Although interrupt-driven I/O frees the
processor until the device requires service, the processor still
responsible for making the data transfer. DMA removes the
processor from the path, and thus relieve congestion on the
system bus [7]. DMA is an essential feature of all modern
systems, as it allows devices to transfer data without
subjecting the CPU to a heavy overhead. DMA services are
provided by a DMA controller, which is itself a specialized
processor whose specialty is transferring data directly to or
form I/O devices and memory. Datapath of DMA is shown
in Fig.2.

Fig.2. Datapath of DMA

A DMA transfer essentially copies a block of memory

from one I/O device to another. DMA can be used to offload
expensive memory operations, such as large copies or
scatter-gather operations, from the CPU to a dedicated DMA
controller [8].

3. Implementation of a DMAC using SystemC

The DMA controller needs a circuit of an interface to
communicate with the processor and I/O device. The
structure of a DMAC is shown in Fig. 3.

Fig. 3. The structure of a DMAC

DMAC consists of 7 modules: Core_to_DMA module,

Channel_Register module, DMA_Req_Ack module,
Interrupt module, DMA_Control module, FIFO module, and
Master_Interface module. The function of each module is as
follows.

Core_to_DMA module : This module stores initial

information of data transfer.

Channel_Register module : This module divides channel
for DMA operation and temporarily stores changed data
by DMA_Control module.

DMA_Req_Ack module : This module performs
handling a request of external devices.

Interrupt module : This module is only responsible for
delivering interrupt signal from DMAC to CPU.

DMA_Control module : This module controls DMAC

FIFO module : This module stores temporarily data of
I/O device or memory

Master_Interface module : This module provides
coordination of the communication between I/O device
or memory and DMAC

The processes of a DMAC consist of 4 steps.

Step 1: Core_to_DMA module stores the information of
data burst transfer.

Step 2: If a request happens from outside to
DMA_ReqAck module, this module checks a status of
DMA_Control module.

Step 3: If DMA_Control module is active, load the data
from memory in source address through an available
channel in Channel_Register module. The loaded data
is temporarily stored in FIFO module and
DMA_Control module stores data in FIFO module into
memory in destination address.

Step 4: For next data transfer, DMA_Control module
confirms values of Descriptor_register in
Channel_Register module. Repeat step3 if positive,

778

otherwise finish DMAC operation.

The DMAC has four independent programmable channels
allowing four different contexts for DMA operation. If
requests from two channels become active at the same time,
channel with the highest priority is serviced first. Each
channel has a specific hardware priority DMA channel 0 has
the highest priority and channel 3 has the lowest priority.

The DMAC enables the transaction: memory-to-memory,
memory-to-peripheral, peripheral-to-memory, and peripheral
-to-peripheral. We program the DMAC by writing to the
DMA control registers over the Core-to-DMA module. Burst
size of the implemented DMAC in this paper can be
programmed to make data transmission of 8, 16, or 32-bit.

4. Simulation and Analysis

This paper designs a DMAC from high-level abstraction to
low-level abstraction and compares performances of DMAC
in each abstraction level. The simulation and verification
system roughly consists of three main components as shown
in Fig. 4.

Fig. 4. Simple structure of verification system

The operation of each module is as follows:

SystemC::driver : This module generates test_vector
using random() function which will be sent to DMAC
module.

SystemC::DMAC : This module performs data
transmission mentioned above.

SystemC::monitor : This module receives the results
from DMAC module and reports the execution time on
SystemC console monitor.

 Comparisons of performances on each data burst size in
TLM model and in RTL model are shown in Fig. 5 and Fig.
6 respectively.

Fig. 5. Comparison of performance in TLM

Fig. 6. Comparison of performance in RTL

As shown in Fig. 5 and Fig. 6, execution time of TLM is

around 40 times shorter than one of RTL model. The
difference of total execution time of a whole DAMC module
is made by active process switching time of event-based
simulation kernel even though the operation times of only
System::DMAC module in each level are almost same.

RTL model needs much operation time for data transfer
because it is descriptive of all in/out port of module for
operation. TLM model is read/write or transmit/receive
operations operating on complete data structures that is
being exchanged between the functional units. The TLM
level model effectively creates an executable system model
that simulates order of magnitude faster than a RTL model.

The SystemC has port that it refers to channel through
interface and is an object for connection between modules.
The channel of SytemC is container for communications
protocols and synchronization. Channel provides paths to
exchange information in a predefined protocol and
implements one or more interface.

SystemC provides various channels for connection
between modules or processes. We designed DMAC module
using sc_fifo and sc_buffer channel. Comparison of

779

performance on each channel is shown in Fig. 7.

Fig. 7. Comparison of performance on each channel

The more the amount of processing data is, the bigger time
difference on each channel is as shown in Fig. 7. The time
difference between sc_fifo and sc_buffer channel is caused
by the internal scheme of communication method between
each modules even if we design same system.

4. Conclusions

 As a system modeling language, the importance of
SystemC has been stressed in system design. It has a lot of
features on modeling as well as verification. SystemC
describes functionality and communication at various level
of abstraction. In other words, it is possible to explore design
space from high-level abstraction to low-level abstraction.

The implementation of a DMAC using SystemC is
presented in this paper. We implemented a DMAC module
in several abstraction-levels and compared performances of
each level DMAC. We confirmed the difference of between
abstraction levels, and between channels.

REFERENCES

[1] Frank Ghenassia, Transaction Level Modeling with

SystemC, Springer, 2005
[2] David C. Black, Jack Donovan, SystemC:From The

Ground Up, Eklectic Ally, Inc., 2004.
[3] Thorsten Grotker, Stan Liao, Grant Martin, Stuart Swan,

System Design with SystemC, Kluwer Academic
Publishers, 2002.

[4] J.Bhasker, A SytemC Primer, Star Galaxy Publishing,
2002.

[5] OSCI, SystemC version 2.0 User Guide, Synopsys,
Inc.,2001.

[6] http://www.systemc.org.

[7] Miles J.Murdocca, Vincent P.Heuring, PRINCIPLES OF
COMPUTER ARCHITECTURE, Prentice Hall.,2000.

[8] ARM, PrimeCell DMA Controller, Arm,Inc., 2005.

780

