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Abstract: Noises pause a serious challenge in speech recog-
nition systems. Both multiplicative and additive noises af-
fect the performance of automatic speech recognition (ASR)
systems. In this paper, a method which makes use of fast
Fourier transform (FFT) based mel-frequency cepstral coef-
ficients (MFCCs) with time-varying linear predictive coding
(TVLPC) is proposed. Evaluation results of similar pronunci-
ation phrases and 142 words recognition experiments demon-
strate that the proposed approach achieves better results at
10 dB SNR than the conventional approach.
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1. Introduction
It is a fundamental requirement that speech recognition sys-
tems are noise robust and that their performance are resilient
in a variety of noisy environments. In this regard, a number of
speech recognition technologies that give a high recognition
accuracy in noise environments have been developed before
[1], for example.

The difference in additive noise and difference in mul-
tiplicative noise in the spectral domain often degrades the
recognition accuracy in speech as discussed in [2]. Speech en-
hancement is, therefore, aimed at improving the performance
of speech recognition systems in such noisy environments.

Some of the most popular methods for reducing additive
noise are spectral subtraction (SS) method, dynamic range
adjustment (DRA) and the Wiener filter approach. The SS
method, as detailed in [3], is used for restoration of the power
spectrum or the magnitude spectrum of an observable signal
in additive noise as applied in [4]. The DRA is a technique
that corrects the difference between dynamic ranges by nor-
malizing amplitude of speech features for each dimension of
cepstrum as discussed in [5]. The Wiener filter approach [6]
obtains a least squares estimate of the clean signal assuming
that speech and noise are stationary and therefore, can help
enhance speech as explained in [7].

Channel and speaker adaptation are fundamental require-
ments in most conversational speech recognition systems as
presented in [8]. As such, cepstrum mean subtraction (CMS)
is often used in order to compensate for the acoustic channel
in a channel normalization approach. After Fourier transform
in the running spectrum the influence of multiplicative noise
is concentrated on the modulation frequency lower than 1 Hz.
An important component in speech recognition is present in
the range of about 1 to 10 Hz modulation frequency. The run-
ning spectrum analysis (RSA) method is used in order to re-
move un-speech components over 15 Hz in modulation spec-
trum domain thereby emphasizing speech features as detailed

in [9].
This work is an extension of our baseline study we con-

ducted [10]. The difference is that our baseline study fo-
cused on model variations and similar pronunciation phrases
with white noise while this one aims at similar pronuncia-
tion phrases as well as 142 isolated word recognition using
15 types of noise. We seek to determine the noise level under
which our proposed approach performs better than the con-
ventional approach.

The rest of the paper is organized as follows. In Section 2,
we present the steps involved in feature extraction process.
In Section 3, we present simulation parameters, experimental
conditions and feature vector representation. In Section 4,
we present simulation results and their analysis. Finally, in
Section 5, we conclude this paper.

2. Proposed Speech Features Based on Time
Varying LPC

The FFT based MFCCs are computed as discussed in [11],
[12] for examples. For all-pole signal modeling, the output
signal s[n] at time n is modelled as a linear combination of the
past p samples and the input u[n], with G as a gain constant
i.e.,

s[n] = −
p∑

i=1

ais[n− i] + Gu[n]. (1)

For the method of time-varying linear prediction, the pre-
diction coefficients are allowed to change with time progress
[13]. The time-varying model can be represented by

s[n] = −
p∑

i=1

ai[n]s[n− i] + Gu[n]. (2)

The assumption is that the signal is not stationary in an
observed frame. Therefore, the time-varying nature of the
coefficient ai[n] must be specified. We have chosen to model
these coefficients as the linear combinations of some known
functions of time uk[n]:

ai[n] =

q∑
k=0

aikuk[n]. (3)

In this model, the coefficients aik are to be estimated from
the speech signal, where the subscript i is a reference to the
time-varying coefficient ai[n], the subscript k is a reference
to the set of time functions uk[n] and q is the basis function
order. From (2) and (3), the predictor equation is given by

ŝ[n] = −
p∑

i=1

( q∑
k=0

âikuk[n]
)
s[n− i], (4)
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and based on (2) and (4), the predictor error e[n] is defined by

e[n] = s[n]− ŝ[n]. (5)

The predictor error must be minimized with respect to each
coefficient. A model is usually optimized for the data it was
trained for. Therefore, the accurate measure of predictor er-
ror is significant in model assessment. It minimizes chances
of choosing a model that may produce misleading results on
testing data. We assume a constant optimism such that the
model that minimizes training error will also be the model
that will minimize the true predictor error for our testing data.

If we assume q = 1, then from (4) the following equation
can be obtained

ŝ[n] = −
p∑

i=1

(âi,0u0[n] + âi,1u1[n])s[n− i]. (6)

If we allowed arbitrary variations in the coefficients, we
would have as many degrees of freedom in the paramet-
ric model as in the original data, thereby achieving no data
compression or insight into the structure of the signal. By
judicious choice of the basis functions uk[n] we can accu-
rately approximate a wide variety of coefficient time varia-
tions. Possible sets of functions that could be used include
powers of time

uk[n] = nk, k = 0, 1, ...,∞. (7)

Using (7) we have u0[n] = 1, and u1[n] = n, then we can
obtain the following equation

ŝ[n] = −
p∑

i=1

(âi,0 + âi,1n)s[n− i]. (8)

Although (8) can not represent the various types of time vary-
ing models, it is applied for the limited structure of a linearly
and slowly time-variations on an autoregressive model in an
observed frame s[n]. Note that n equals zero at the beginning
of each observed frame. We assume in this paper the above
model can be employed for the representation of speech fea-
tures in a frame.

Using this model, the following speech model is given
from (8):

ŝ[n] = −
p∑

i=1

âi,0s[n− i]− n

p∑
i=1

âi,1s[n− i]. (9)

In (9), the first part of the right-hand side represents time-
invariant factor and thus the second part represents time vary-
ing factor. Accordingly, if we can assume the observed speech
signal can be represented as s[n]→ s0[n]+s1[n] where s0[n]
shows a time-invariant factor and s1[n] shows a time varying
factor respectively, then we get

Hp
0 (z

−1) =
1

1 + â1,0z−1 + â2,0z−2 + ...+ âp,0z−p
, (10)

Hp
1 (z

−1) =
1

1 + â1,1z−1 + â2,1z−2 + ...+ âp,1z−p
, (11)

Table 1. Parameters for 3 similar pronunciation phrases us-
ing conventional FFT based MFCC analysis -[Set A] and
proposed FFT based MFCC with TVLPC analysis -[Set
B]

Parameter Set[A] Set[B]
Sampling 11.025 kHz, 11.025 kHz,

(16-bit) (16-bit)
Frame length 23.2 ms 23.2 ms

(256 samples) (256 samples)
Shift length 11.6 ms 11.6 ms

(128 samples) (128 sampples)
Pre emphasis 1−0.97z−1 1−0.97z−1

Windowing Hanning window none
Feature bi, ∆bi(i = 1, . . . , 12),
vectors ∆bi, ∆bi(i = 0, . . . , 12),

∆2bi ∆2bi(i = 0, . . . , 12),
ci,1(i = 1, . . . , 12)

TVLPC order p = 14
Training set 30 male 30 male

speakers, speakers,
3 utterances 3 utterances
each each

Recognition set 10 male 10 male
speakers, speakers,
1 utterance 1 utterance
each each

HMM states 32 32
Noise white noise and white noise and
type 15 types from 15 types from

NOISEX-92 NOISEX-92
SNR 10 dB, 20 dB 10 dB, 20 dB
Noise DRA, DRA,
reduction CMS/DRA, CMS/DRA,
methods RSA, RSA,

RSA/DRA RSA/DRA

where Hp
0 (z−1) indicates a time invariant transfer function

and Hp
1 (z−1) indicates a time varying transfer function.

The intra-frame cepstrum ci,0 for time invariant coeffi-
cients ai,0 is given by

ci,0 = −ai,0 −
1

i

i−1∑
m=1

mcm,0ai−m,0 (12)

and the intra-frame cepstrum ci,1 for time varying coefficients
ai,1 is given by

ci,1 = −ai,1 −
1

i

i−1∑
m=1

mcm,1ai−m,1. (13)

3. Simulation Parameters and Conditions of
Experiments

The simulation parameters are as shown in Table 1, where
set [A] was used for the conventional approach while set [B]
was used for the proposed approach. The noise robustness
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of our independent speaker speech recognition was evaluated
based on an isolated word recognition task using the Noisex-
92 database [14]. Two main experiments were conducted. In
the first experiment, 30 male speakers each uttering 3 similar
pronunciation Japanese phrases (“denki”, “genki”, “tenki”)
with a utterance frequence of 3 were utilised. In the sec-
ond experiment, the same number of speakers each uttering
142 isolated words with an utterance frequence of 3 were
utilised. In both experiments speech sample was 11.025 kHz
and 16-bit quantization. In our experiment, FFT based MFCC
features were extracted after pre-emphasis and Hanning win-
dowing. The features were then converted to 38-dimensional
feature vectors. Frame length and shift length were 23.2 ms
(256 samples) and 11.6 ms (128 samples) respectively. On
the other hand, TVLPC features were extracted separately af-
ter pre-emphasis but without windowing. The features were
converted to model number dimensional feature vectors re-
spectively.

In the proposed approach, the time invariant MFCC fea-
tures are appended with intra-frame cepstrum estimated using
TVLPC according to the model number. In the recognition
stage, 10 dB and 20 dB of 15 types of noise respectively are
artificially added to the original speech. In the first phase of
our two major experiments we measure the average recogni-
tion rates of 10 male independent speakers, uttering 3 similar
Japanese phrases while in the second phase of the experiment
we measure for 142 isolated Japanese words.

3.1 Feature Representation

We formulate thirteen models, models 0 to 12 of feature
vectors. The model 0 is considered as a conventional ap-
proach and its 38-parameter feature vector consisting of
12 cepstral coefficients (without the zero-order coefficient)
plus the corresponding delta and acceleration coefficients is
given by [b1b2 . . . b12∆b0∆b1 . . .∆b12∆2b0∆2b1 . . .∆

2b12]
where bi, ∆bi and ∆2bi, are MFCC, delta MFCC and delta-
delta MFCC, respectively. As for the proposed models, j
(j = 1, . . . , 12), we append the intra-frame cepstrum (with-
out the zero-order coefficient) for time-varying coefficients
[c1,1, c2,1, . . . , cj,1] to the model 0 feature vector depending
on the model number.

4. Simulation Results
In our experiments we evaluate the performance of both
the conventional approach and proposed approach on DRA,
CMS/DRA, RSA and RSA/DRA using MATLAB (R2014a)
software. Table 2 shows the average recognition accuracy on
clean speech for models 0 to 12. Shown in Table 3 are com-
parative recognition results for similar pronunciation phrases
on white noise at 10 dB and at 20 dB SNR.

Based on results from Table 3, models 0 to 5 are chosen
for further analysis using 15 types of noise from NOISEX-92
database. Experiments are conducted on 3 similar pronunci-
ation phrases for models 0 to 5 and on 142 isolated words
for model 0 to 2 respectively. Table 4 shows results for mod-
els 0 to 5 on 3 similar pronunciation phrases while results in
Table 5 show the average recognition accuracy for models 0

Table 2. Average recognition (%) accuracy of similar pronun-
ciation phrases on clean speech

Clean DRA CMS/DRA RSA RSA/DRA
Model 0 80.00 80.00 73.33 70.00
Model 1 80.00 80.00 73.33 70.00
Model 2 83.33 80.00 73.33 66.67
Model 3 83.33 86.67 80.00 73.33
Model 4 80.00 83.33 73.33 70.00
Model 5 83.33 80.00 73.33 66.67
Model 6 83.33 76.67 73.33 66.67
Model 7 83.33 76.67 73.33 70.00
Model 8 80.00 73.33 73.33 70.00
Model 9 80.00 76.67 70.00 70.00
Model 10 76.67 80.00 70.00 73.33
Model 11 80.00 76.67 66.67 66.67
Model 12 76.67 76.67 66.67 63.33

Table 3. Average recognition accuracy (%) of similar pronun-
ciation phrases on white noise at 10 dB and 20 dB SNR

Models DRA CMS/DRA RSA RSA/DRA
10dB 20dB 10dB 20dB 10dB 20dB 10dB 20dB

Model 0 40.00 56.67 46.67 73.33 63.33 66.67 46.67 60.00
Model 1 40.00 56.67 50.00 73.33 60.00 63.33 53.33 66.67
Model 2 43.33 63.33 53.33 73.33 60.00 63.33 50.00 56.67
Model 3 50.00 63.33 53.33 73.33 60.00 60.00 43.33 60.00
Model 4 36.67 80.00 50.00 63.33 46.67 60.00 43.33 60.00
Model 5 50.00 60.00 56.67 60.00 46.67 63.33 50.00 63.33
Model 6 43.33 76.67 60.00 60.00 40.00 63.33 50.00 60.00
Model 7 43.33 73.33 60.00 66.67 43.33 63.33 53.33 63.33
Model 8 40.00 80.00 56.67 70.00 43.33 63.33 53.33 60.00
Model 9 40.00 73.33 53.33 66.67 43.33 63.33 53.33 63.33
Model 10 33.33 80.00 60.00 63.33 40.00 63.33 53.33 63.33
Model 11 40.00 80.00 60.00 66.67 43.33 63.33 50.00 63.33
Model 12 36.67 80.00 60.00 70.00 46.67 60.00 43.33 60.00

Table 4. Average recognition accuracy (%) of similar pronun-
ciation phrases for 15 types of noise at 10 dB and 20 dB
SNR

Models DRA CMS/DRA RSA RSA/DRA
10dB 20dB 10dB 20dB 10dB 20dB 10dB 20dB

Model 0 55.56 67.78 58.00 74.00 61.33 71.56 52.89 66.00
Model 1 56.45 70.67 58.00 73.33 61.78 71.56 54.67 67.11
Model 2 56.22 70.45 56.67 71.55 62.64 70.67 52.89 66.44
Model 3 58.45 68.67 58.44 73.56 60.89 70.67 53.33 66.44
Model 4 56.00 72.00 55.78 71.78 58.67 67.11 51.55 64.12
Model 5 57.78 69.56 55.56 71.78 58.00 67.11 51.56 65.33

Table 5. Average recognition accuracy (%) of 142 isolated
words for 15 types of noise at 10 dB and 20 dB SNR

Models DRA CMS/DRA RSA RSA/DRA
10dB 20dB 10dB 20dB 10dB 20dB 10dB 20dB

Model 0 56.57 80.09 72.70 87.62 71.59 85.30 69.79 82.66
Model 1 56.66 80.08 72.53 87.52 71.36 85.35 70.72 83.37
Model 2 55.58 79.17 71.35 87.11 72.57 87.43 69.48 83.13

to 2 on 142 isolated words. On clean speech, model 3 per-
forms better at 83.33 % with DRA, 86.67 % with CMS/DRA,
80.00 % with RSA and 73.33 % with RSA/DRA compared
with 80.00 %, 80.00 %, 73.33 % and 70.00 % obtained using
model 0 under similar experimental conditions.

On 10 dB SNR white noise, models 2, 5, 6 and 7 per-
form well at 43.33 % 50.00 % 43.33 % and 43.33 % with DRA
compared to 40.00 % obtained with model 0. In the same or-
der, 53.33 %, 56.67 %, 60.00 % and 60.00 % recognition ac-
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curacy are obtained with CMS/DRA respectively, compared
to 46.67 % of model 0. Further, recognition accuracy of
50.00 %, 50.00 %, 50.00 % and 53.33 % are obtained with
RSA/DRA for the same models in the stated sequence or-
der. The results are in comparison with 46.67 % obtained with
model 0. As shown in Table 3, at 20 dB SNR white noise,
models 2 to 12 performs well above average with DRA. How-
ever, all models under-performs with RSA.

Results from the experiments of similar pronunciation
phrases on 15 types of noise, as shown in Table 4, indicate that
model 3 performs better giving 58.45 % at 10 dB DRA com-
pared with with model 0 at 55.56 %, while model 4 performs
better at 20 dB DRA giving 72.00 % compared with model 0
at 67.78 %. From the same table, model 3 yield 58.44 % with
CMS/DRA at 10 dB compared to 58.00 % of model 0. All
models of the proposed approach perform below 74.00 % ob-
tained using model 0 with CMS/DRA at 20 dB. Models 1 and
2 show recognition accuracy of 61.78 % and 62.64 % at 10 dB
with RSA respectively compared to model 0 at 61.33 %. On
the other hand, only model 1 yield similar results to model 0,
other models performed below the baseline model results of
71.56 % at 20 dB RSA. Model 1 and model 3 yield 54.67 %
and 53.33 % recognition accuracy, at 10 dB RSA/DRA re-
spectively compared with model 0 at 52.89 %, while model 1
yield 67.11 %, and models 2 and 3 yield 66.44 % at 20 dB
RSA/DRA compared with 66.00 % of model 0. Shown in Ta-
ble 5 are results for 142 isolated words on 15 types of noise.
Results show that model 1 yield the average recognition ac-
curacy of 56.66 % at 10 dB DRA, 85.35 % at 20 dB RSA and
70.72 % and 83.37 % at 10 dB and 20 dB RSA/DRA respec-
tively compared to 56.57 %, 85.30 %, 69.79 % and 82.66 % of
model 0 respectively.

5. Conclusions
This paper presents the analysis of the results obtained for
3 similar pronunciation phrases and results for 142 isolated
word recognition of independent male speakers. Results from
the conventional and proposed approaches have been com-
pared using different feature vector dimensions. Based on ex-
perimental results, it can be concluded that the performance
of proposed approach depends on the influence of a particu-
lar noise and the effectiveness of the kind of noise reduction
technique applied on such noise. The proposed approach is
more effective at 10 dB SNR. The proposed approach equally
demonstrates the effective use of inter-frame with intra-frame
variations in speech recognition at high signal-to-noise ratio.
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