
GLORY-DB: A Distributed Data Management System
for Large Scale High-Dimensional Data

Hyun Hwa Choi, Hun Soon Lee, Kyeong Hyeon Park, Mi Young Lee

Database Research Team, Electronics and Telecommunications Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-700, Korea
E-mail: {hyunwha, hunsoon, hareton, mylee}@etri.re.kr

Abstract: Recently, the proliferation of the web and digital
photography has resulted in the need of a distributed
storage system for managing large scale data and an
indexing technique for supporting efficient nearest neighbor
search on high-dimensional data. One of the most
challenging areas in the fields of a distributed data
managing and image processing is scalability of data and
machines. Especially, for a large scale image clustering
problem, which can not fit on a single machine, the
traditional nearest neighbor search can not be applied. This
paper presents the design of a distributed data management
system, highly available and scalable storage system which
provides contents-based retrieval using a hybrid spill tree
with local signature files. We describe our scalable index
structure and how it can be used to find the nearest
neighbors in the cluster environments.

1. GLORY-DB

1. 1 Data Model and Index Mechanism

GLORY-DB supports the relational logical data model,
where a database consists of a collection of named tables,
each with a named collection of columns. But GLORY-DB
differs significantly from traditional relational databases in
its data model like Figure 1.

Table

Column Group

Column

Row

cell

value- version1,
value- version2,

…

Key Column

Row
Key

value - version1,
value - version2,

…

Table

Column Group

Column

Row

cell

value- version1,
value- version2,

…

Key Column

Row
Key

value - version1,
value - version2,

…

Table

Column Group

Column

Row

cell

value- version1,
value- version2,

…

Key Column

Row
Key

Table

Column Group

Column

Row

cell

value- version1,
value- version2,

…

Key Column

Row
Key

value - version1,
value - version2,

…

value - version1,
value - version2,

…

Figure 1. Data Model

 Columns in GLORY-DB tables have one or more cells.
A cell stores data with a key that is represented as arbitrary
strings. Each cell can also contain multiple versions of the
same data like Bigtable [1]. Columns in a GLORY-DB

table can form unique row keys that are used to specify any
row in the table. There are restrictions that key columns can
have only a cell with the last version and not be deleted as
long as there is the table containing them. On the other
hand, GLORY-DB implements column groups to store
physically tables. A column group consists of the columns
which are typically accessed together in a table. Especially
columns in a column group can not belong to any other
column groups. Some useful tuning parameters can be
specified on a column group basis. For example, a column
group can be declared to be in-memory, to be compressed
by user-specified compression format and to create a
Bloom filter [2] that allows us to ask whether the column
group might contain any data for a specified row/column
pair.

…………

..Chan Ho Park1000 1101 1110sunshine

..Ji Seong Park0001 1101 1010 sun

....……

..Kil Dong Hong0010 1101 1110moon

…………

…OwnerFeature VectorTitle

…………

..Chan Ho Park1000 1101 1110sunshine

..Ji Seong Park0001 1101 1010 sun

....……

..Kil Dong Hong0010 1101 1110moon

…………

…OwnerFeature VectorTitle

…

1000 1101 1110

0001 1101 1010

…

0010 1101 1110

…

Feature Vector

………

..Chan Ho Parksunshine

..Ji Seong Parksun

....…

..Kil Dong Hongmoon

………

…OwnerTitle

…

1000 1101 1110

0001 1101 1010

…

0010 1101 1110

…

Feature Vector

………

..Chan Ho Parksunshine

..Ji Seong Parksun

....…

..Kil Dong Hongmoon

………

…OwnerTitle

(start key, end key)

(Art, moon)

…

…

(moon, oasis)

(sun, zebra)

…
…

a) Row key Index on General Data

b) Row Key Index on High-Dimensional Data

row key

row keysignature
file

Feature
vector

file

signature
file

Feature
vector

file

Figure 2. Index Mechanisms

 GLORY-DB provides two index mechanisms based on
row keys as shown in Figure 2. One is to sort row keys of
tables in lexicographical order. It is similar to a two-level
hierarchy of a METADATA table in Bigtable [1]. The first
level, called as root table, contains the location of all
partitions in a special meta table, and is treated specially –
it is never split. Each partition of a meta table contains the
location of a set of user table partitions. The location
information of a partition in root and meta tables is stored
under a row key that is an encoding of the partition’s table
name and its start row. Partitions are the sorted data sets

* This work was supported by the IT R&D program of MIC/IITA.
[2007-S-016-01, The Development of Global Resource Management
System for Future Internet Service]

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

757

with a predefined size as a management unit and are
serviced by multiple nodes. The other is to use a hybrid
spill-tree with local signature files [3], which is to combine
a hybrid spill tree with signature files, in order to search the
nearest neighbors on large scale high-dimensional data. A
signature file is a small abstraction of feature vectors from
multimedia data, which is typically encoded as bit
sequences.

Hybrid Spill Tree
Non-overlap nodes
overlap nodes
Non-overlap nodes
overlap nodes

signature
file

Feature
vector

file

…signature
file

Feature
vector

file

Machine 1

signature
file

Feature
vector

file

signature
file

Feature
vector

file

Machine 2 Machine n

Figure 3. Hybrid Spill Tree with Local Signature Files

 In Figure 3, we build a hybrid spill tree based on the
sample vector data that are extracted from the original
feature vector files. The size of a random sampling data has
to be determined by the capacity of a machine that
accommodates the hybrid spill tree, because it is difficult
that a tree structure is operated on multiple nodes and is
traversed in parallel. Each leaf node in the constructed
hybrid spill tree defines a partition, where we store a
signature file and feature vector file of the corresponding
range of the hybrid spill tree on a separate machine. In
essence, our index structure can be viewed as a single
hybrid spill tree, spanning a large number of machines.
 Due to construction of a hybrid spill tree [4], which can
have either a spill-tree [4] partition with the overlapping
buffer or a metric-tree [5] partition without overlapping as
child node, the approximate NN (Nearest Neighbor) search
on a hybrid spill tree also becomes a hybrid of the MT-DFS
search and the defeatist search. Namely, we do defeatist
search on overlapping nodes and MT-DFS search on non-
overlapping nodes. The candidate nodes determined from
traversing a hybrid spill tree find the nearest neighbors
about given query point concurrently. At this point, each
candidate node processes K-NN search by sequentially
scanning a local signature file with a signature extracted
from query point. Then it returns as the result of query the
feature vectors corresponding to the candidates of the local
signature file.
 Our hybrid spill tree with local signature files is an
appropriate index method for high-dimensional data in
cluster environments, because it provides index scalability

and runs K-NN search on the distributed computing nodes
in parallel.

1. 2 System Architecture

GLORY-DB consists of a master server and multiple
partition servers as Figure 4 shown below.

Master
Server

Search

E-market UCC

Wiki Mashup

Client

Search

E-market UCC

Wiki Mashup

Client

…

…

…

Data Location Info.

distribute partitions

①find data location

②search data DataData

Partition
Server

Partition
Server

Partition
Server

…

…

Global FS

…

…

…

Figure 4. GLORY-DB Architecture

 The master server manages catalogs of tables, users and
privileges. In addition the master server manages
information about both partition servers and partitions, and
automatically assigns partitions to partition servers on the
distributive law by load of partition servers in monitoring.
If the master server detects a partition server faulty or
beyond its capacity, the master server reassigns all or some
partitions of it to other partition servers. It means that
GLORY-DB provides data services despite failure of
partition servers. Partition servers perform data operations
on partitions assigned to themself. If data size of a partition
reaches a threshold after insert operations, a partition server
for the partition splits it into two smaller partitions and
notifies the master server. Then the master server asks one
partition server to load the partition that has split. Two
existing partitions may be merged to form one larger
partition in GLORY-DB. In order to provide an efficient
data search, partition servers have writable and readable
buffers, manage data on column group basis and use Bloom
filters.
 These functions of GLORY-DB are archived on the
distributed file system, such as GFS (Google File System
[6] and HDFS (Hadoop Distributed File System) [7]. They

758

are file systems that efficiently cluster storage servers in a
manner that scalability and availability are maintained.

A row-key based search of GLORY-DB is performed
differently according to index mechanisms of row keys.
With two-level hierarchy index, the GLORY-DB behaves
like Bigtable. Whereas, the user queries with feature vector
are processed through similarity search on a hybrid spill
tree with local signature files as the followings: (1) Given a
feature vector, we first find a partition server assigned a
hybrid spill tree related it. (2) We traverse the hybrid spill
tree on the partition server in order to determine which leaf
nodes can process the given feature vector, and transfer it to
the determined candidate partition servers concurrently. (3)
Then, each candidate partition server makes the signature of
the query’s feature vector, performs K-NN search on a
local signature file with the generated query’s signature,
and returns k-feature vectors as results of the similarity
search. (4) We decide final k-feature vectors among the
feature vectors obtained from the candidate partition servers,
and obtain data from partition servers containing them.

2. Related Work
The proliferation of digital photography has increased the
importance of the high quality internet service based on the
moving picture like user generated contents (UGC). For this,
global internet service providers need the large-scale
efficient internet service environment. Traditional database
vendors have developed databases that can store large
volumes of data. Oracle’s Real Application Cluster
database [8] uses shared disks and IBM’s DB2 Parallel
Edition [9] is based on a shared-nothing architecture. Both
products provide a complete relational model with
transactions and require many professionals to manage
them.
 GLORY-DB shares many characteristics with
Bigtable[1] and C-Store [10][11]. In order to store large
scale data, the three systems consist of thousands of
commodity servers and use a shared-nothing architecture.
GLORY-DB and Bigtable distribute subsets of rows in a
table to servers, whereas C-Store does subsets of columns
in a table. The three systems have a column storage
structure as a read-optimized relational DBMS. GLORY-
DB stores data on column groups, Bigtable on locality
groups, and C-Store on projections. Especially, in C-Store,
a column data can repeatedly be stored in multiple projects
on servers. For speed-up of data search, three systems had
two different data structure, one for recent writes, and one
for storing long-lived data, with moving data from one to
the other by periods. In addition three systems use
compression algorithms and lightweight transaction.
 Recent internet search engine may provide content-
based retrieval on billions of multimedia data, because the
keyword-based search on large scale images and video
collections is too expensive and requires much manual
intervention. Herein we define a content-based retrieval as
identifying the images or video data most similar to a given
query image or video clip. A content-based retrieval
performs similarity search using features such as color,
shape and so on, extracted from the original image or video
data. Typically, a feature is represented by a point in a high-

dimensional data space. Bigtable and C-Store are designed
to efficiently manage and search text data, whereas
GLORY-DB considers how to manage and search both text
and multimedia data. GLORY-DB provides two index
mechanisms. One is a two level hierarchy of root and meta
tables for text data. The other is a hybrid spill-tree with
local signature files for high-dimensional data. A hybrid
spill tree with local signature files is an appropriate index
method for large scale high-dimensional data in cluster
environments due to it’s scalability and parallel processing.
We let the user determine an index mechanism for data in
creating table. GLORY-DB provides simple keyword
search APIs with row key and similarity search APIs with
feature vector data as input for content-based retrieval.

L

v.rpvv.lpv

N(v.lc) N(v.rc)

L

v.rpvv.lpv

N(v.lc) N(v.rc)
LL LR

Overlapping buffer

a) Partitioning in a metric tree

b) Partitioning in a spill tree

τ τ

Figure 5. Metric Tree and Spill Tree

 Over the years, techniques for solving the exact and
approximate k nearest neighbor (K-NN) problem have
evolved. The metric tree [5] in Figure 5 shown above
organizes a set of points in a spatial hierarchical manner. A
search on a metric-tree is MT-DFS that is very efficient for
NN search but starts to slow down as the dimension of the
dataset increases. Moreover it spends up to 95% of the time
verifying that it is in fact the true NN. A spill-tree [4] is a
variant of metric-trees in which the children of a node can
contain shared datapoints. A defeatist search on a spill-tree
is very fast than a MT-DFS on metric-tree because it
descends the metric tree using the decision boundaries at
each level without backtracking. A hybrid spill tree [4] is a
hybrid of both a metric-tree and a spill-tree. It can have

759

either a spill-tree partition with the overlapping buffer or a
metric-tree partition without overlapping as child node.

Unfortunately, these methods are all designed to run on
a single machine. For large scale multimedia data clustering
problem, which can not fit on a single machine, the
traditional algorithms simply cannot be applied. To solve
this problem, Google introduced a hybrid spill tree in
parallel [12]. It builds a metric tree as a top tree for a
random sample of data small enough to fit on a single
machine. Each of the leaf nodes in this top tree then defines
a partition, for which a hybrid spill tree can be built on a
separate machine.

3. Conclusion
In this paper, we have described GLORY-DB, a distributed
data management system for storing large scale of text data
or high-dimensional data.
 GLORY-DB supports the multi-dimensional data model
based on row, column and cell. Especially GLORY-DB
manages multiple versions of cell data. In addition,
GLORY-DB has a physical data model, column group, to
store tables. A column group consists of the columns which
are typically accessed together in a table. For efficient data
search, GLORY-DB has two index methods: a two-level
hierarchy of row keys in lexicographical order and a hybrid
spill tree with local signature files. These index
mechanisms are appropriate for scalability of data and
machines in cluster environments. GLORY-DB provides
keyword search of text data and content-based retrieval
using similarity searching of multimedia data.
 GLORY-DB consists of thousands of commodity
servers and uses a shared-nothing architecture. A master
server in GLORY-DB monitors partition servers
periodically and assigns partitions to partition servers
automatically. Though this operating scenario, GLORY-DB
provides availability of data services despite failures of
partition servers.

References
[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“Bigtable: A Distributed Storage System for Structured
Data”, OSDI 2006

[2] R. H. Bloom, “Space/Time Trade-offs in Hash Coding
with Allowable Errors”, CACM 1970, pp.422-426

[3] K. Lee, H. Lee, M. Lee, M. Kim, “A Scalable Index
Mechanism for High-Dimensional Data in Cluster File
Systems”, IMECS 2008

[4] T. Liu, A. W. Moore, A. Gray, and K. Yang, “An
Investigation of Practical Approximate Nearest Neighbor
Algorithms”, NIPS 2004

[5] P. Ciaccia, M. Patella and P. Zezula, ”M-tree: An
Efficient Access Method for Similarity Search in Metric
Spaces”, VLDB 1997

[6] S. Ghemawat, H. Gobioff, and Shun-Tak Leung, “The
Google File System”, SOSP 2003

[7] APACHE.ORG
 http://hadoop.apache.org/core/docs/current/hdfs_design.ht

ml Project page
[8] ORACLE.COM

www.oracle.com/techonology/products/database/clusterin
g/index.html Product page

[9] C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran,
S. Padmanabhan, G. P. Copeland, and W. G.
Wilson , ”DB2 Parallel Edition”, IBM Systems Journal
34, 2 (1995), pp. 292-322

[10] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M.
Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E.
O’Neil, P. O’Neil, A. Rasin, N. Tran and S. Zdonik, ”C-
Store: A Column-oriented DBMS”, VLDB 2005, pp. 553-
564

[11] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R.
Madden, ”Materialization Strategies in a Column-
Oriented DBMS”, ICDE 2007, pp. 466-475

[12] T. Liu, C. Rosenberg and H. A. Rowley, ”Clustering
Billions of Images with Large Scale Nearest Neighbor
Search”, WACV 2007

760

