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Abstract:   This paper presents design of equalizer based 
under echo pairs and amplitude distortion.  The equalizer 
was used with the fourth order bernstein polynomials.  The 
advantage of this design is to get smooth magnitude 
response and zero phase response.   It was found possible to 
eliminate echo pairs and amplitude distortions.  The 
modulated sine-squared pulse test signal was used for test 
the performance of proposed equalizer.  This research 
attempted to implement the equalizer with the MATLAB 
software. The simulation and experimental results are in 
good agreement. It is likely that application of equalizer to 
broadcast television systems. 
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1.  Introduction 
The broadcast TV signal to which the receiver synchronizes 
its operations is called the principal signal, and the principal 
signal is usually the direct signal received over the shortest 
transmission path. Thus, the multipath signals received over 
other paths are usually delayed with respect to the principal 
signal and appear as lagging echoes signals. It is possible 
however, that the direct or shortest path signal is not the 
signal to which the receiver synchronizes. When the 
receiver synchronizes its operations to a (longer path) 
signal that is delayed respective to the direct signal, there 
will be a leading multipath signal caused by the direct 
signal, or there will a plurality of leading multipath signals 
caused by the direct signal and other reflected signals of 
lesser delay than the reflected signal to which the receiver 
synchronizes. In the broadcast TV art multipath signals are 
referred to as “echoes”.   The echoes cannot be completely 
eliminated.     It can be reduced to a greater extent by signal 
processing. To carry out signal processing and to make 
corrections, there is a pre-requisite for echo cancellation. 
Many researchers have proposed the method of paired 
echoes to study the effects of incremental amplitude 
distortion [1-2].  The effect of amplitude distortion, 
separate from phase distortion, is relatively easy to 
determine first by the Fourier integral.  
        This paper introduces an echo suppression technique 
from effect of amplitude distortion. The echo suppression 
technique is designed by equalizer based on bernstrin 
polynomial [3-4].  Its amplitude response is smooth and it 
has zero phase response.  This research attempted to 
implement the equalizer with the MATLAB software. 
 

2.  Echo Pairs and Amplitude Distortion 
This paper has a substantial contribution to the correction of 
the echo distortion in the broadcast color TV transmission 
system.  The pulse test signal is the modulated sine-squared 

pulse.  A system with constant group delay, but with 
controlled amplitude distortion, can be used of symmetrical 
“positive” pair of echoes, i.e. the  product of echo 
amplitude of each pair being positive, so that  both are 
positive. The gain/frequency characteristic produced by 
adding the echoes to the central pulse involves a sinusoidal 
term, and can be defined by 
 
                    𝑥(𝑡) = 𝐼(𝑡)[1 + cos(2𝜋𝑓𝑐𝑡)]                        (1) 
 
     where   fc is center frequency of sub-carrier. 
 
 
𝐼(𝑡) = 2

𝜋 ∫
1
𝛽

. [0.3 sin(5𝛽𝛽) + 0.4 sin(10𝛽𝛽) +𝜔𝑠
0

                          0.3 sin(15𝛽𝛽)] . [1 − 𝛽
𝜔𝑠

]. cos(𝛽𝑡) 𝑑𝛽       (2) 
 
     then   
 

𝐼(𝑡) = 𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3(𝑡) 
 
     We can solve for I1(t), I2(t) and  I3(t) from  
 
 
𝐼1(𝑡) = 0.3

2𝜋
{𝑆𝑖[(5𝛽 + 𝑡)𝜔𝑠] + 𝑆𝑖[(5𝛽 − 𝑡)𝜔𝑠]} +

              0.3
4𝜋
�𝑆𝑖 ��5𝛽 + 𝑡 + 2

𝜏
�𝜔𝑠�  + 𝑆𝑖 ��5𝛽 + 𝑡 − 2

𝜏
�𝜔𝑠�� +

              0.3
4𝜋
�𝑆𝑖 ��5𝛽 + 𝑡 + 2

𝜏
�𝜔𝑠� + 𝑆𝑖 ��5𝛽 + 𝑡 − 2

𝜏
�𝜔𝑠��  

 
 
𝐼2(𝑡) = 0.4

2𝜋
{𝑆𝑖[(10𝛽 + 𝑡)𝜔𝑠] + 𝑆𝑖[(10𝛽 − 𝑡)𝜔𝑠]} +

         0.4
4𝜋
�𝑆𝑖 ��10𝛽 + 𝑡 + 2

𝜏
�𝜔𝑠�  + 𝑆𝑖 ��10𝛽 + 𝑡 − 2

𝜏
�𝜔𝑠�� +

          0.4
4𝜋
�𝑆𝑖 ��10𝛽 − 𝑡 + 2

𝜏
�𝜔𝑠� + 𝑆𝑖 ��10𝛽 − 𝑡 − 2

𝜏
�𝜔𝑠��  

 
 
𝐼3(𝑡) = 0.3

2𝜋
{𝑆𝑖[(15𝛽 + 𝑡)𝜔𝑠] + 𝑆𝑖[(15𝛽 − 𝑡)𝜔𝑠]} +

         0.3
4𝜋
�𝑆𝑖 ��15𝛽 + 𝑡 + 2

𝜏
�𝜔𝑠�  + 𝑆𝑖 ��15𝛽 + 𝑡 − 2

𝜏
�𝜔𝑠�� +

         0.3
4𝜋
�𝑆𝑖 ��15𝛽 − 𝑡 + 2

𝜏
�𝜔𝑠� + 𝑆𝑖 ��15𝛽 − 𝑡 − 2

𝜏
�𝜔𝑠��  

 
given   𝑆𝑖(𝑢) = ∫ sin (𝑢)

𝑢
𝑑𝑢, 𝜏 = 1 𝑀𝑀𝑀 

 
       where T is the time interval between the echo and the 
main pulse. 𝛽  is the frequency measured from the center 
frequency (fc). 𝜔𝑠  is the bandwidth of main pulse,                   
whereas the corresponding delay distortion is zero. The 
echo spaceing is chosen so that 1/2T corresponds to the 
upper limit of the video frequency spectrum [5].   
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A MATLAB program for obtaining the simulated  results of 
echo patterns is shown in MATLAB Script. 
 
“             clear all; close all; 
               clc; clf; 
               % Parameter setting 
               Fc = 4.43*10^6     
               Wc = 2*pi*Fc; 
                T = 0.1*10^-6; 
                t = -5*10^-6:0.01*10^-6:5*10^-6; 
                Ws = 2*pi*1*10^6; 
                Town = 1*10^6; 
                % First Term 
                F1 = 0.3/(2*pi).*(sinint((5*T-t).*Ws) 
                        +(sinint((5*T+t).*Ws)); 
                F2 = 0.4/(2*pi).*(sinint((10*T-t).*Ws) 
                        +(sinint((10*T+t).*Ws)); 
                F3 = 0.3/(2*pi).*(sinint((15*T-t).*Ws) 
                        +(sinint((15*T+t).*Ws)); 
                % Second Term 
                S1 = 0.3/(4*pi).*(sinint((5*T-t-2/Town).*Ws)… 
                                         + sinint((5*T-t+2/Town).*Ws)… 

                          + (sinint((5*T+t-2/Town).*Ws)… 
                          + (sinint((5*T+t+2/Town).*Ws)); 

                S2 = 0.4/(4*pi).*(sinint((10*T-t-2/Town).*Ws)… 
                                        + sinint((10*T-t+2/Town).*Ws)… 

                         + (sinint((10*T+t-2/Town).*Ws)… 
                         + (sinint((10*T+t+2/Town).*Ws)); 

                S3 = 0.3/(4*pi).*(sinint((15*T-t-2/Town).*Ws)… 
                                        + sinint((15*T-t+2/Town).*Ws)… 

                         + (sinint((15*T+t-2/Town).*Ws)… 
                         + (sinint((15*T+t+2/Town).*Ws)); 
R = (F1+F2+F3) + (S1+S2+S3) ; 
plot (t,R) ; grid on ; 
C = R.cos(2*pi*Fc*t); 
Plot(t,C); 
A=C+R; 
plot (t,A); 
p = 0*10^-6:0.01*10^-6:10*10^-6; 
N = length (R) ; 
ws = 2pi/N; 
wnorm = -pi:ws:pi; 
wnorm = wnorm (1:length (R)) ; 
w = wnorm*ws; 
X=fft (R); 
plot (w,abs(fftshift(X)));  
N = length (C) ; 
ws = 2pi/N; 
wnorm = -pi:ws:pi; 
wnorm = wnorm (1:length (C)) ; 
w = wnorm*ws; 
X1=fft (C); 
Plot (w,abs(fftshift(X1)));  
N = length (A) ; 
ws = 2pi/N; 
wnorm = -pi:ws:pi; 
wnorm = wnorm (1:length (A)) ; 
w = wnorm*ws; 
X2=fft (A); 
plot (w,abs(fftshift(X2)));                                 ” 

 
 
 
 
 
 
 
 
 
 

 
(a) Time domain 

 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Frequency domain 

 
Figure 1. Simulation results of echo patterns. 

 
 

   
         

 
 
 
 
 
   
 
 
 
 

(a) Time domain 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

(b) Frequency domain 
Figure 2. Experimental results of echo patterns. 
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      Figure 1-2 show simulation and experimental results of 
the echo patterns in time and frequency domain.  In other 
words, it follows that the amplitude frequency characteristic 
of a system plays no part in determining the symmetry of 
the pulse.  This pulse will be symmetrical about a delayed 
central time axis, for a symmetrical pulse, if there is no 
delay distortion.  In short, then, “positive” pairs of 
symmetrical echoes can be used to determine or to very the 
amplitude of time and frequency characteristic without 
affecting the phase. 

 
3.  Equalizer Based on Bernstein Polynomials 

The nth (n ≥ 1) Bernstein polynomials is given by [6-10] 
 

𝐵𝑛(𝑓; 𝑥) = �𝑓�
𝑖
𝑛
� �
𝑛
𝑖
� 𝑥𝑖(1 − 𝑥)𝑛−𝑖                        (3.1)

𝑛

𝑖=0

 

 
Where 𝑓(𝑥) is defined in the interval [0,1], 

 
For i = 0,1,…,n  where �𝑛𝑖 � = 𝑛!

𝑖!(𝑛−𝑖)!
 

 
     Considering the approximation of a low pass function as 
shown in Figure 3, we get 

 

 𝑓 �𝑖
𝑛
� = �  1,            0 ≤ 𝑖 ≤ 𝑛 − 𝐾 

0,   𝑛 − 𝐾 + 1 ≤ 𝑖 ≤ 𝑛                            (3.2) 
 

     Where, K is the number of successive discrete points at 
the zero values function. 
 

 
Figure 3. Low-pass function. 

 

      Instead of equation (3.2) into equation (3.1) can be. 
 
 
                                                                                      (3.3) 

 

       Let us consider the interval of x which is defined in the 
interval [0,1].  It must be changed to the interval [0,∝] for 
Ω by using the transformation as folloes 

      

                                                                                       (3.4) 

 

       Substitution of Eq. (3.4) in to  Eq. (3.3) yields  

 

                                                                                      (3.5) 

 

       Using derivation of Herrmann’s polynomials, So Eq. 
(3.3) can rewrite as   

 

                                                                                       (3.6) 

 

       Thus, The equalizer was used with the fourth order 
bernstein polynomials given by  

 

𝐸(𝜔𝜏) ≜
𝐴
2

[1 + cos(𝜔𝜏)] = 𝐴𝑐𝑐𝑐2 �
𝜔𝜏
2
�                  (3.7) 

 
     Setting         
 
                           𝑦2 = 𝛼2𝑐𝑖𝑛2 �𝜔𝜏

2
�                                  (3.8)  

 
     Thus     
 
                          �1 − 𝑦2

𝛼2
� = 𝑐𝑐𝑐2 �𝜔𝜏

2
�                              (3.9) 

 
      Then 

 
                                                                                      (3.10) 
 
 
      where  𝛼 = 1.1 
 
      The tranfer function of equalizer base on bernstein 
polynomials is defined by  

 
 
          (4) 
 
 
 
    substitution                                  in to Eq.4., we obtain 
the new equation as                                
 
 
                                                                                           (5) 
 
 
where   
 

     Figure 4 shows characteristic of equalizer based on 
bernstein polynomials by using the MATLAB simulation.  
The advantage of this design is to get smooth magnitude 
response and zero phase response.  Therefore, the proposed 
equalizer in this paper selected the bernstrin polynomials 
for proving the effciency in equalizing the amplitude 
distortion.   
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Figure 4. magnitude response of  equalizer base on 
                       bernstein polynomials. 
 
 

 

 

 

 

 

 

 

 

 

 

 
(a) Time domain 

 
 

 

 

 

 

 

 

 

 

 

 
(b) frequency domain 

 

Figure 5. experimental results of echo patterns. 
       

     Figure 5 demonstrates the TV signal from equalizer. It 
shows experimental results without echo pair and amplitude 
distortion. 

 
4.  Conclusions 

This paper introduces an echo paired suppression technique 
from effect of amplitude distortion. The echo suppression 
technique is designed by equalizer based on bernstrin 
polynomial. It has a substntial contribution to the correction 
of the echo distortion in the broadcast color TV 
transmission system.   The advantage of this design is to get 
smooth magnitude response. Therefore, the proposed 
equalizer was selected for proving the effciency in 
equalizing the amplitude distortion.  The output signal from 
equalizer shows experimental results without echo pair and 
amplitude distortion. 
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