
Boxcan: A Platform Realizing Fast Retrieval of
Parent-Child Tree of Containers and Inner Objects

Over EPCIS Events
Yuki Sato, Taisuke Sato, Jin Mitsugi

Auto-ID Laboratory Japan at Keio University
5322 Endo, Fujisawa, Kanagawa 252-0882 Japan

Email:{sat3, paina, mitsugi}@sfc.wide.ad.jp

Abstract—This paper introduces “Boxcan”, an information
retrieval platform for aggregated objects in ID-based object
management system based on GS1 EPCglobal architecture
framework. Boxcan platform receives an EPC of a container,
then provides a tree structure of current parent-child relationship
between the EPCs of the container and its inner objects. This
paper proposes the system design of Boxcan platform and its
applications. The proposed system design is evaluated with a
field test of a practical object management system including
Boxcan platform. A technical challenge to realize this function
of Boxcan platform, fast retrieval of current parent-child rela-
tionship of EPCs from EPCIS, is also discussed in this paper.
The effectiveness of the caching mechanism of EPC’s current
parent-child tree, which is a solution to this technical problem,
is also evaluated by an experiment in a comparison with direct
querying to EPCIS.

Index Terms—Internet of Things, Supply chain management,
Object management, GS1 EPCglobal architecture framework,
EPCIS

I. INTRODUCTION

ID-based object management is one of typical applications
of Internet of Things. Objects are assigned their own unique
identifiers (IDs), then information systems recognize these
objects with using ID-based automatic identification technolo-
gies such as barcode and RFID. In addition to automatic
identification technologies, recent enhancements of cloud com-
puting and ubiquitous networks enable information systems
to collect such real-space information in a real-time manner.
Feedbacks by information systems to real-space based on such
real-time real-space information can reduce losses in current
object management processes, e.g. over-stocking and thefts by
workers, thus contribute to sustainable society.

GS1 EPCglobal architecture framework [1] is a set of
standards which focuses on such ID-based object management
systems. In GS1 EPCglobal architecture framework, each ob-
jects are assigned an unique EPC, Electronic Product Code, as
an ID. There are many prior works about object management
system based on GS1 EPCglobal architecture framework, such
as [2] and [3]. We also developed an object management
system which interworks with an electronic commerce system
[4], [5].

Not only individual management, objects are often put into
and handled by a container. Identification of such aggregated
objects is done by opening the containers and checking the all

of inner objects individually, but it is a tough work when there
are large amount of containers and objects. Even if we use
RFID, which can recognize non-line-of-sight RF tags attached
on objects in the container, it is difficult to guarantee that the
all objects in the container are identified. In some ID-based
object management systems, not only individual objects but
also containers are managed by their own IDs. Retrieval of IDs
of the objects in a container from container’s ID is effective
in such situations.

This paper introduces “Boxcan (box+scan)”, which is de-
veloped as the part of the object management system based
on GS1 EPCglobal architecture framework. Boxcan is an
information retrieval platform which retrieves EPCs of objects
from their container’s EPC. Boxcan absorbs the difference
between individual objects’ EPCs and containers’ EPCs, thus
applications implemented on Boxcan platform do not need
to be aware whether an EPC is assigned to an individual
object or a container. A technical challenge to realize this
function of Boxcan platform is fast retrieval of a tree structure
of parent-child relationship of EPCs, which changes dynami-
cally by adding/removing objects to/from a container. In GS1
EPCglobal architecture framework, such EPCs’ parent-child
relationship is expressed with AggregationEvents recorded in
EPCIS [6], EPC Information Service. A caching mechanism
which realizes fast retrieval of parent-child tree of EPCs based
on AggregationEvents is also proposed in this paper.

This paper is organized as the following. Section II in-
troduces the system design of Boxcan. The fast retrieval of
the current parent-child tree of EPCs is discussed in Section
III. Section IV evaluates the proposed system. Section V
concludes this paper.

II. SYSTEM DESIGN

This section introduces Boxcan platform. The first subsec-
tion briefly introduces EPCIS, which is the background of
Boxcan platform. Then, the next subsection describes system
design of Boxcan platform with one example of applications
implemented on it.

A. Basis of EPCIS

EPCIS is a service which records information of objects
attached their own EPCs as “EPCIS events”. EPCIS 1.0.1

Proceedings of APCC2015 copyright © 2015 IEICE 14 SB 0087

692

Registration of EPCIS events

EPCIS accessing app.

EPCIS
Repository

EPCIS accessing app.
(subscriber)

EPCIS capturing app.

EPCIS Capture Interface

EPCIS Query Interface

“poll” request

“subscribe” request

List of EPCIS events
recorded in repository

Notification of newly
registered EPCIS events
(periodic or event driven)

Fig. 1. Registration (capture) and retrieval (query) of EPCIS events

specification [6] defines the following 4 types of EPCIS events.
1

• An ObjectEvent records information of individual ob-
jects. The epcList field records a list of EPCs related to
the event.

• An AggregationEvent records a parent-child relationship
of objects, such as a relationship between a container and
its inner objects. The values of the parentID field and the
childEPCs field correspond to a parent and children of the
relationship, respectively.

• A QuantityEvent records quantity information of ob-
jects. The epcClass field records EPC URI representing
class of the object, and the quantity field records its
quantity.

• A TransactionEvent records relationship information
between objects and business transactions. The parentID
field and the epcList field record EPCs related to the
event.

The all of these event types have fields recording where / when
/ why an event has occurred.

EPCIS is composed of EPCIS repository, capture interface
and query interface. EPCIS events registered by capturing
applications through the capture interface are recorded by the
EPCIS repository, and these events can be retrieved through
the query interface. The query interface provides two event
retrieval method, poll and subscribe. When the poll method is
invoked, EPCIS responds with a list of recorded EPCIS events
which match conditions given by an accessing application.
The subscribe method registers subscription requests from
accessing applications. After this subscription request via the
subscribe method, EPCIS sends newly registered events to
registered subscribers. Figure 1 shows the flow of registration
(capture) and retrieval (query) of EPCIS events.

B. System design of Boxcan platform

This subsection explains the design of Boxcan platform with
one example of its applications. This application, Boxcan web
interface, displays a hierarchical list of objects contained in the

1The latest version of EPCIS standards is 1.1, but this description is based
on the older version because we developed Boxcan platform for EPCIS 1.0.1.
However, the idea of Boxcan platform can be applied on EPCIS 1.1.

Boxcan
web interface

① EPC input

AggregationTracker
Parent-child tree retrieval engine
of EPCs based on EPCIS

EPC master
Database of static information
of EPCs (e.g. name of items, ...)

⑥ Inner objects of given EPC
　 displayed in hierarchical view

User

② Query about given EPC
③ Information of EPCs
　 included in a container
　 attached given EPC

④ Query about the EPCs
　 in the response of
　 AggregationTracker

⑤ Master data of EPCs
　 (name of items, ...)

Boxcan platform

Fig. 2. Example transactions between Boxcan platform and its application
(Boxcan web interface as an example)

container whose EPC is given by a user. It enables workers
to grasp what objects are in a containers without opening it.
Figure 2 shows an overview of transactions related to this
application.

The EPC given to Boxcan web interface may be an individ-
ual object’s one or a container’s one containing some objects.
Boxcan web interface sends this EPC to AggregationTracker,
a current parent-child tree retrieval engine of EPCs based on
EPCIS events. AggregationTracker returns parent-child tree
whose root element is the given EPC. Quantity information
of EPCs in this tree is also included in the response. These
two kinds of information returned by AggregationTracker are
based on AggregationEvents and QuantityEvents registered to
EPCIS, respectively. The reason why we introduce Aggrega-
tionTracker instead of direct querying to EPCIS is described
in the next section.

AggregationTracker has the same query interface as EP-
CIS query control interface, i.e. AggregationTracker returns
the above two kinds of information in the form of EPCIS
events. A parent-child tree and EPCs’ quantity information
are expressed with AggregationEvents and QuantityEvents,
respectively. Each AggregationEvent contains one container’s
EPC in the parentID field and its direct children’s EPCs in
the childEPCs field, and the whole of the tree is expressed
with the same number of AggregationEvents as the number
of containers. Each EPC’s quantity information is expressed
with a QuantityEvent whose epcClass field records that EPC.
Note that these events in responses of AggregationTracker are
different from EPCIS events recorded by the EPCIS repository.
Figure 3 and Table I show an example of EPCs which compose
parent-child relationship and AggregationTracker’s responses
in this example, respectively.

After the query to AggregationTracker, Boxcan web inter-
face retrieves master data of the EPCs included in the response
of AggregationTracker. Master data of EPCs means static
properties of objects attached EPCs, such as name of objects,
category etc. Boxcan web interface retrieves this information
with accessing EPC master, a database recording the master
data, then finally displays a list of the EPCs of inner objects

Proceedings of APCC2015 copyright © 2015 IEICE 14 SB 0087

693

urn:epc:id:sscc:458247648.00000001

urn:epc:id:sscc:458247648.00000002

urn:epc:id:sgtin:
458247648.0999.1

urn:epc:id:sgtin:
458247648.0999.2

urn:epc:id:sgtin:
458247648.0999.3

urn:epc:id:sgtin:
458247648.0999.4

urn:epc:id:sgtin:
458247648.0999.5

Fig. 3. Example of a parent-child relationship between EPCs (Circles and
boxes represent individual objects and containers, respectively.)

TABLE I
AGGREGATIONTRACKER’S RESPONSES IN THE EXAMPLE OF FIG.3

Inputted EPC Response (unordered list of EPCIS events)

urn:epc:id:sscc:
458247648.00000001

AggregationEvent
- parentID=urn:epc:id:sscc:458247648.00000001
- childEPCs=urn:epc:id:sscc:458247648.00000002

urn:epc:id:sgtin:458247648.0999.1
urn:epc:id:sgtin:458247648.0999.2

AggregationEvent
- parentID=urn:epc:id:sscc:458247648.00000002
- childEPCs=urn:epc:id:sgtin:458247648.0999.3

urn:epc:id:sgtin:458247648.0999.4
QuantityEvent
- epcClass=urn:epc:id:sscc:458247648.00000001
QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.1
QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.2
QuantityEvent
- epcClass=urn:epc:id:sscc:458247648.00000002
QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.3
QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.4

urn:epc:id:sscc:
458247648.00000002

AggregationEvent
- parentID=urn:epc:id:sscc:458247648.00000002
- childEPCs=urn:epc:id:sgtin:458247648.0999.3

urn:epc:id:sgtin:458247648.0999.4
QuantityEvent
- epcClass=urn:epc:id:sscc:458247648.00000002
QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.3
QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.4

urn:epc:id:sgtin:
458247648.0999.1

QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.1

urn:epc:id:sgtin:
458247648.0999.5

QuantityEvent
- epcClass=urn:epc:id:sgtin:458247648.0999.5

urn:epc:id:sgtin:
458247648.0999.6 null list

contained in the container. When the container includes other
containers, the multi-layered parent-child tree is displayed in a
hierarchical view. The information associated with these EPCs,
such as names and quantities, are also displayed.

The features of AggregationTracker and EPC master is
required for not only this example application but also many

other applications related to object management systems.
Therefore, these subsystems are implemented as a platform
which can be used by multiple applications, then we named
this platform “Boxcan platform”. In the object management
system which we developed, not only the above-mentioned
Boxcan web interface but the following applications are im-
plemented on the Boxcan platform.

• Inventory management application
• Interworking function between non-EPC electronic com-

merce system and EPCIS
Boxcan platform enables these applications to manage individ-
ual objects in a container only with an input of the container’s
EPC.

III. FAST RETRIEVAL OF CURRENT PARENT-CHILD TREE
OF EPCS

This section discusses on the retrieval of current parent-child
tree of EPCs based on EPCIS event. At first, a problem of
EPCIS related to this function is described, then a subsystem
which solves this problem, i.e. detail of AggregationTracker,
is introduced.

A. EPCIS’s problem in retrieval of current status of objects

Each EPCIS event recorded in EPCIS repository represents
an observation or an operation for objects attached EPCs. In
other words, it is not necessary that each EPCIS event records
these objects’ complete current status at the time when the
event is issued. As an example, EPCIS 1.0.1 specification [6]
defines three types of meaning of AggregationEvent which are
distinguished according to the value of its action field as the
following.

• An AggregationEvent whose action field’s value is
“ADD” means addition of EPCs recorded in the childE-
PCs field to the parent-child relationship whose parent is
recorded in the parentID field.

• An AggregationEvent whose action field’s value is “OB-
SERVE” means observation of EPCs which compose a
parent-child relationship. There is a possibility that the
parentID and childEPCs fields do not record the all of
EPCs belonging to this relationship.

• An AggregationEvent whose action field’s value is
“DELETE” means removal of EPCs recorded in the
childEPCs field from the parent-child relationship whose
parent is recorded in the parentID field.

These definitions are reasonable from the viewpoint of EP-
CIS capturing applications, which generate EPCIS events.
It is impractical to check the all objects in a container
and recognize these EPCs at each time of addition/removal
of objects to/from the container, which are expressed as
AggregationEvents whose action fields record “ADD” and
“DELETE”, respectively. As mentioned in the introduction,
complete observation of EPCs belonging to an parent-child
relationship is also a tough work.

Conversely, from the viewpoint of Boxcan, the above-
mentioned meanings of AggregationEvent are troublesome

Proceedings of APCC2015 copyright © 2015 IEICE 14 SB 0087

694

EPCIS repository Agg.Tracker
Client

AggregationTracker
Update interface

EPCIS query
callback interface

Query interface
EPCIS query

control interface

Internal
database

EPCIS capturing
application

e.g. handy terminal

Event registration

Event notification

ACK

ACK

Response

Query by an EPC

Updating

Response

Search for
aggregation record

Response

Search for
quantity record

(Recursive search
 for aggregation
 record)

Information
updating sequence

Information retrieval
sequence

Fig. 4. Sequence of information updating and retrieval of AggregationTracker
(information updating and retrieval processes are asynchronous each other)

because the all of them do not represent current and complete
parent-child relationship of EPCs, i.e. a complete list of objects
in a container. To retrieve this information by direct querying
to EPCIS, it is required to process the all of AggregationEvents
whose parentID fields record the container’s EPC. If EPCs
compose multi-layer parent-child relationships, e,g, objects in
inner cases in a container, recursive repetition of the above
process is required to retrieve complete parent-child rela-
tionship information because each AggregationEvent records
information of only single-layer parent-child relationship. It
is considered that this process causes long delay when the
amount of events recorded in EPCIS repository becomes large.
In addition, when there are multiple queries on the same EPC,
it is required to repeat this process which is mostly (if there is
no newly registered event, totally) same to that of the previous
query.

B. AggregationTracker: improvement on retrieval delay by
caching current parent-child tree

AggregationTracker whose function is introduced in Section
II is developed to solve the problem mentioned in the previous
subsection. A concept of AggregationTracker is caching cur-
rent parent-child tree of EPCs. When new events are registered
to EPCIS, AggregationTracker updates its cache by processing
these events. AggregationTracker responds to queries based
on the cache, thus realizes fast response in comparison with
direct querying to EPCIS. Figure 4 is a sequence diagram of
AggregationTracker.

AggregationTracker is a subscriber of EPCIS, which imple-
ments EPCIS query callback interface to receive notifications
of newly registered events from EPCIS. EPCIS query callback
interface can receive notifications from multiple EPCIS repos-
itories, thus one AggregationTracker can manage information
recorded in multiple EPCIS repositories. This extensibility is
also an advantage of AggregationTracker over direct querying
to EPCIS.

Casette gas stoves

Helmets Work gloves

EPC barcode labels

Fig. 5. Objects attached EPCs encoded in GS1-128 barcode labels

Fig. 6. A GS1-128 barcode label attached on a container

IV. EVALUATION

This section evaluates functionality of Boxcan platform and
performance of AggregationTracker. The evaluation is done
by using the practical implementations of Boxcan platform
in the object management system which is developed by us
and now in practical operation. This system has 3 EPCIS
repositories (and their interfaces) and one AggregationTracker
applied on them. Fosstrak [7] is used as an implementation of
EPCIS. AggregationTracker is implemented as a web service
using Java servlet. EPCIS (fosstrak) and AggregationTracker
are deployed on the same server. EPC master uses MySQL
database with web front-end implemented with Ruby.

In the developed object management system, each object
and container is attached a EPC encoded in a GS1-128 barcode
as shown in Fig.5 and Fig.6. Boxcan web interface, one of
applications of Boxcan platform, accepts an EPC expressed
with this GS1-128 format, then converts it to pure identity URI
[8], which is a format of EPCs used in information systems
such as EPCIS. In a field test of the object management
system, it is confirmed that Boxcan web interface works.
Figure 7 is a screenshot of Boxcan web interface running
on a tablet device. It is confirmed that other applications
implemented on Boxcan platform, the inventory management
application and the interworking function between non-EPC
electronic commerce system and EPCIS, also work. These
results prove that the system design of Boxcan is valid.

Proceedings of APCC2015 copyright © 2015 IEICE 14 SB 0087

695

Fig. 7. Screen of Boxcan web interface : Names of objects (in Japanese)
and corresponding EPCs and quantities are displayed in hierarchical view.

The effectiveness of caching EPCs’ current parent-child tree
by AggregationTracker is also evaluated with a comparison
between performance of information retrieval by Aggrega-
tionTracker and that by direct querying to EPCIS. In the
experiment, the following two values are compared.

• Time duration which AggregationTracker takes to process
one EPC which contains six other EPCs

• Time duration to retrieve the same information against
the above EPC by direct querying to EPCIS

At the time of this experiment, the EPCIS repository recording
562 events, which is one of the above-mentioned three EPCIS
repositories, is referred in the second case. AggregationTracker
records 1994 EPCs’ information collected from the three
EPCIS repositories.

Figure 8 shows the distribution of time duration measured
100 times for each of the above two cases. The measured
values includes time duration to retrieve master data of the
EPCs, but it can be ignored in this performance comparison of
parent-child tree retrieval because master data retrieval process
is equally included to the two cases. From Fig.8, it is clear
that AggregationTracker achieves shorter time duration than
direct querying to EPCIS. In the average, the first case and
second case take 0.07 and 0.34 seconds, respectively, and
there is 0.27 second difference between the time duration of
these two cases. This result proves the effectiveness of caching
EPCs’ current parent-child tree by AggregationTracker. Note
that the direct querying to EPCIS will take much longer time to
retrieve this information if implementing the absolutely same
functionality to AggregationTracker, such as the application to

Fig. 8. Comparison of time duration to retrieve current parent-child tree of
EPCs

multiple EPCIS repositories.

V. CONCLUSION

Multiple applications which require information of EPCs
current parent-child relationship can be implemented on Box-
can platform proposed in this paper. It is confirmed that
the applications practically implemented on Boxcan platform
works, thus the validity of the system design of Boxcan
platform is proved. To realize Boxcan’s functionality, it is
a key technical challenge to realize fast retrieval of current
parent-child tree of EPCs from EPCIS events. Caching EPCs’
current parent-child tree is effective to solve this problem.
In the experiment, the proposed caching method achieves
approximately 5 times shorter delay to retrieve parent-child
tree than the direct querying to EPCIS in the average.

REFERENCES

[1] “The GS1 EPCglobal Architecture Framework,” GS1 Final Version 1.5
Approved 23 March 2013.

[2] R. Wang and W. Gunthner, “Design and development of a traceability
service for epc-enabled food supply chains,” in Software, Telecommu-
nications and Computer Networks (SoftCOM), 2012 20th International
Conference on, Sept 2012, pp. 1–6.

[3] W. He, N. Zhang, P. Tan, E. Lee, T. Li, and T. Lim, “A secure RFID-
based track and trace solution in supply chains,” in Industrial Informatics,
2008. INDIN 2008. 6th IEEE International Conference on, July 2008, pp.
1364–1369.

[4] Y. Sato, M. Yoshida, K. Miyazaki, and M. Jin, “An information system
for btoc e-commerce of agricultural products based on the epcglobal
architecture,” The Transactions of the Institute of Electronics, Information
and Communication Engineers D, vol. 96, no. 10, pp. 2406–2417, 2013,
(in Japanese).

[5] J. Mitsugi, Y. Sato, T. Yokoishi, T. Tashiro, T. Eda, K. Sato, and Y. Kishi,
“Regional purchase orders dissemination and shipments aggregation of
agricultural products with interworking epc network and edi system,”
in RFID-Technologies and Applications (RFID-TA), 2013 IEEE Interna-
tional Conference on. IEEE, 2013, pp. 1–6.

[6] “EPC Information Services (EPCIS) Version 1.0.1 Specification,” errata
Approved by TSC on September 21, 2007.

[7] “fosstrak - Open Source RFID Platform,” https://code.google.com/p/
fosstrak/.

[8] “EPC Tag Data Standard Version 1.5,” august 18, 2010.

Proceedings of APCC2015 copyright © 2015 IEICE 14 SB 0087

696

