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Abstract:

Machine learning is a powerful modelling and prediction
tool for data analysis and decision-making in agriculture pro-
duction, especially for the cases of dealing with large volume
of data in diverse formats. In this paper, we present a case
study of applying machine learning to classify the working
states of harvesting sugarcane based on the time-series data,
which is recorded by a digital tachograph system mounted on
a small sugarcane harvester. The study aims at constructing
a model and training it applicable to automatically learn from
the time-series images and classify the images into different
working states. Three machine learning models are imple-
mented to evaluate the best accuracy for classification and the
optimum parameters for the model. The result indicates that
using machine learning is an effective way to distinguish the
working states, and the average F1_score reaches 0.970 when
recognizing the cutting state. The classification by the Sup-
port Vector Machine (SVM) model with Radial Basis Func-
tion (RBF) kernel gains higher accuracy than by that with lin-
ear kernel and by K-Nearest Neighbors (KNN).

1. Introduction

Machine learning as well as other artificial intelligence and
deep learning is a powerful tool for learning from and making
predictions on data [1, 5]. Because of having the outstand-
ing capability for handling of large quantities of individual or
contextual data in diverse formats, machine learning is widely
used in many different fields, and also including in agricul-
tural science. In order to improve agricultural productivity
and economic growth, numerous Information and Commu-
nication Technologies (ICTs) have been applied in data col-
lection and analysis for daily farming practices. The data of
describing nature environment, crop status and farming activ-
ity is often recorded by using sensors, monitors, or other on-
line/offline devices, and its possible formats involve discrete
or continuous values, image, sound, movie, or their combina-
tional forms. Making sense of the data is not easy, and accord-
ingly some efficient techniques for data processing, analyzing
and predicting like machine learning are required.

There exists many of agricultural real applications by using
machine learning. McQueen et al. [2] gives an overall review
of applying machine learning to agricultural data. A study
using diverse machine learning techniques for fruits and veg-
etables is presented in [4]. Pietersma et al. [3] report an exper-
imental performance analysis for applying machine learning
on small data sets. More practical applications involve using
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machine learning to forecast the agricultural products such as
shrimp and chicken export [8], and to classify field crop in-
sects by multiple-kernel learning method [9]. Currently as a
new and hot area of machine learning research, deep learning
is also impacting the agricultural technique innovations. For
example, Steen et al. [7] has successfully applied deep learn-
ing for obstacle detection in agricultural fields, and Zou et al.
[10] dedicate an approach for feature selection based on deep
learning for remote sensing scene classification.

In this study, we present a case study applying machine
learning to working states classification in agricultural pro-
duction. Shikanai and Guan [6] have used a digital tachograph
system (DTS) for recording the working data for harvesting
sugarcane, which is an important crop in Okinawa, Japan.
The DTS records of the harvester consist of the GPS track-
ing data, the engine revolution speed and the working state
images taken from multiple cameras. The proposed manual
method in [6] is suitable for small volume of the data, how-
ever, for the large amount of the time-series data recorded
by DTS, there requires an automatic model with the capabili-
ties for calculating the working area and the work efficiency,
learning from the datasets, and classifying and predicting the
working data. This paper focus on constructing such models
capable of automatic classification for the DTS data.

2. Experimental data and methods

The experimental data is recorded by the DTS mounted
on a small sugarcane harvester. The DTS consists of a drive
recorder, two front cameras and a rear camera. When the
power of the harvester is on, the DTS starts recording the
GPS clock and location data, the number of engine’s Revo-
lution Per Minute (RPM), and the working images toward the
front-left, front-right and rear directions of the machine body.
The front camera records a realtime working image per two
seconds, while the rear camera shots per minute on a storage
bag for storing the cut fragment canes and crashes. The GPS
clock, together with location data, RPM value and working
images are stored in the memory card of the DTS. Figure 1
shows the time-series samples data recorded by the DTS.

According to the RPM values and the working images, we
can manually distinguish the activities of the harvester. When
the harvester is stopping, the number of the RPM is zero, and
the time-series images taken by the left or right camera are
almost static. The number of RPM keeps in a lower range
from zero to 1,000 when loading/unloading the storage bag,
or idling for short-time preparation and maintenance, and in a
higher range from 1,000 to 1,900 when backing or rotating the
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Figure 1. The time-series data recorded by DTS
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Figure 2. Four working states of the harvester

direction along with the moving lanes. While the harvester is
cutting sugarcane, the engine turns to high speed of revolu-
tion over than 1,900 RPM, and simultaneously, the canes are
attached on both the left and right cutting arms of the har-
vester body. Figure 2 shows the sample images of four work-
ing states recorded by the front-left camera.

The DTS data for experiment is recorded during the har-
vesting season from January to February, 2013. Except the
days unavailable for harvesting due to weather or machine
condition, there are 26 work days having valid DTS data. We
consider using a major component of the DTS data, the time
series images, to classify and predict the working states. Let
m (m = 1,...,26) be the number of a work day, the set of
the images taken from the left, right and rear camera can be
denoted as SL,,, SR, SB,,(m = 1,...,26), respectively.
Since the DTS using the same clock, a combined image in
which the left and right camera’s images are horizontally ar-
ranged is more meaningful than a single image from one side
camera. Accordingly, we define an additional set SC,,, for
representing the combined images. According to the same
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prescriptive naming rule of the time series images, and the
combined image SC,, can be created by matching the file
names of the original images from the left and right cameras.
We considered three classifiers of the SVM with RBF ker-
nel, the SVM with linear kernel, and the K-Nearest Neighbour
(KNN) for distinguishing the working states. The brief steps
applying the classifiers to the DTS data include (1) loading the
original images and converting into representation images (2)
splitting the representation images into a test set and a train-
ing set by k-fold cross-validation so that the validation set is
no longer needed. (3) creating training vectors by using PCA
for dimensionality reduction on the training set (4) creating a
classifier for training the data, and (5) making prediction on
the test set and evaluating the classification model quality.

3. Experimental results

The experiments are made by a Python program running
on a MacBook Pro with Intel Core i5 and and 8GB RAM.
Since we use the randomized singular value decomposition
for dimensionality reduction in the PCA procedure, for avoid-
ing contingent case all the computed result data is derived
from the average values by five times of experiments. The
dimensionality of features and the length of principle compo-
nents of the PCA are defined as 128 x 96 = 12,288 and 150
in advance, respectively. Among all sets of original images,
we are particularly interested in the set of the combined im-
ages containing both the left and right work states. Using this
set, we plot some representative images transformed from the
eigen values computed by the PCA in Figure 3. Each image
is typical of a set of similar working states of the harvester.

After loading the original images and converting to the rep-
resentation images, the classifier splits the data into a training
dataset with 75% size and a test dataset with 25% size of the
images set. And then, the classifier transforms the training
dataset by the PCA procedure, fits the classifier and makes
the prediction on the test dataset. The experiment results are
shown in Table 1. In the table, every SC,,, corresponds a set
of images taken in a workday. The columns with labels of
“SC-2, SC-2L, SC-2K” list the result data computed by the
classifiers of the SVM with RBF kernel, the SVM with lin-
ear kernel and the KNN, for two states classification, respec-
tively. Similarly, those with the labels of “SC-4, SC-4L, SC-
4K” contain the result data for four states classification. Here,
two states classification indicates classifying the images into
a cutting state or a not-cutting state, and four states classifica-
tion indicates classifying the images into a state of stop, idle,
moving or cutting. In the case of two states classification,
the average values of F1_score for the three classifiers reach
0.970, 0.960, 0.955, and in four states classification, the com-
paratively lower values of 0.937, 0.921, 0.915 are obtained.

In addition to the SC,,, the sets SL,, and SR,, use the
same parameters for running the classifiers. Using these pa-
rameters, we can easily compare the performance between the
two classification and the four states classification, and be-
tween the three classifiers. Figure 4 (a) shows the two paral-
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Figure 3. Transformed images from principal components

lel curves with the markers of the average values of F1_score
for the two states classification and the four states classifica-
tion. It is very distinct that the two states classification gains
the higher performance than the four states classification. It
is considered as that when the harvester is cutting the sugar-
cane, the canes attaching to the part of the machine body fa-
cilitates distinguishing the cutting state. Contrastively for the
four states classification, the working image of stop, idle and
moving does not have notably separable features, and thus the
average F1_score is slightly low. In Figure 4 (b,c), the clas-
sifier of the SVM with RBF kernel “SC-2, SC-4” exhibit the
highest performance among the threes classifiers. This has
been demonstrated in all the experiments running on the orig-
inal images from the left camera and the right camera, and
their combined images. The figure only shows the result on
the two and four states classification for the combined images.

In order to ascertain the factors causing the prediction er-
ror, we list 10 prediction error sample images taken by the left
camera on the workday of January 25, 2013 (Figure 5). There
are 44 prediction error images for predicting the 3,187 images
in the test set. The labels under the image name conform the
naming rule of Prediction (True). Referring to the RPM num-
ber and the other neighbour time series images, we find that
the images of No. 6 and 7 border the time of starting cutting
operation, and the image of No. 8 borders the finish time of
cutting. The RPM number of the first image is 1,680, but of
its former and latter series images are mostly over 1,920, and
thus we consider the work state is exactly in cutting because
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Table 1. Average F1_scores

WorkDate Da(trf;et Sar("N'jles sC-2 | sc-2L [ sc-2k | sc-4 | sc-4L | sc-4k
2013.0124: SCO1 | 12,306 | 0.966| 0.959] 0.945] 0.931] 0.919] 0.915
2013.01.25 . SC02 | 12,243 | 0.983] 0.976 0.972| 0.963| 0.951] 0.944
20130126 SC03 | 12,312 | 0.963 0.951] 0.949] 0.942 0.920] 0.927
2013.01.27 . SC04 | 12,819 | 0.955| 0.943| 0.945| 0.923| 0.904| 0.902
2013.01.28 . SC05 | 10,791 | 0.956 0.946| 0.939] 0.917| 0.909] 0.897
2013.01.29 | SC06 | 12,125 | 0.965| 0.953| 0.952] 0.934] 0.913| 0.912
2013.01.30 . SCO7 | 4,982 | 0.963| 0.959] 0.946] 0.938 0.934] 0.914
2013.01.31: SC08 | 11,886 | 0.970| 0.956] 0.958| 0.950] 0.926] 0.932
2013.02.01 . SC09 | 11,167 | 0.969] 0.957] 0.949] 0.928] 0.915| 0.908
2013.02.02 | SC10 | 12,667 | 0.973] 0.957| 0.959] 0.944| 0.925| 0.926
2013.02.03 . SC11 | 10,024 | 0.982] 0.972] 0.969] 0.937| 0.928] 0.917
2013.02.04 . SC12 | 11,498 | 0.971] 0.963| 0.962| 0.940| 0.913| 0.920
2013.02.05¢ SC13 | 8,775 | 0.965| 0.944] 0.945| 0.922| 0.907| 0.900
2013.02.06 . SC14 | 13,494 | 0.960] 0.943| 0.938| 0.929] 0.907| 0.894
2013.02.07 . SC15 | 12,109 | 0.986| 0.980] 0.967| 0.953| 0.940| 0.926
2013.02.08 | SC16 | 12,375 0.965| 0.943] 0.942] 0.929] 0.906| 0.895
2013.02.09 . SC17 | 12,804 | 0.987] 0.976] 0.973| 0.962 0.948| 0.944
2013.02.10 . SC18 | 4,133 | 0.981] 0.980| 0.971] 0.955| 0.954 0.926
20130213 SC19 | 8,648 | 0.976| 0.968| 0.963| 0.923| 0.892| 0.908
20130214 SC20 | 13,159 | 0.986| 0.977] 0.976| 0.932] 0.902| 0.923
20130215 SC21 | 5,608 | 0.956| 0.957| 0.926] 0.919] 0.915| 0.871
20130216 | SC22 | 7,563 | 0.955| 0.945] 0.938| 0.926] 0.914| 0.905
20130220 SC23 | 13,671 ] 0.971] 0.960] 0.959] 0.939] 0.919] 0.912
20130221 SC24 | 13,137 | 0.981] 0.966] 0.965| 0.948| 0.928| 0.928
2013.02.22 . SC25 | 4,102 | 0.982] 0.981] 0.976] 0.965| 0.957| 0.942
2013.02.26 | SC26 | 13,065 | 0.951] 0.946| 0.942 0.922| 0.898| 0.908
Max 13,671 [ 0.987| 0.981| 0.976] 0.965| 0.957( 0.944

Min 4,102 | 0.951| 0.943| 0.926( 0.917| 0.892| 0.871

Average| 10,672 | 0.970] 0.960| 0.955| 0.937] 0.921] 0.915

Sum | 277,463

of the possibility of lowly recording the RPM value or a short
machine body adjustment sometimes. The true state of the
next four images of No. 2, 3, 4, 5 is in not-cutting, and of the
remaining two images of No. 8 and 10 is exactly in cutting.

4. Discussions

In this study, we have implemented three machine learning
models for automatically classifying the working states by the
DTS data. For each model, 780 times of experiments were
made for training and predicting the dataset converted from
the original images in 26 workdays. The result data was de-
rived from the average values by five times of experiments,
and therefore was reliable for quantitative evaluation. The op-
timal trade-off parameters C' = 500,y = 0.01 for the SVM
with RBF kernel were adequate values for avoiding the over-
fitting and underfitting.

In the experiments, every dataset was derived from only
one workday data. The average time for modelling computa-
tion was 34.8 s after loading the initial data when using the
SVM with RBF kernel. With respect to the possible maxi-
mum input data size of the machine learning model, we exper-
imented on the datasets derived from multiple workdays. Up
to the dataset size of 8 workdays containing 143,595 images,
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Figure 5. Prediction error images

the model gained the average F1_score 0.965 in 3.9 h. For
more larger input dataset size, the model exited the comput-
ing process by raising a memory error. The strategies such re-
ducing the typical features of the image in advance and man-
aging the computer memory usage are required for modelling
the datasets in all of workdays.

There exist many contextual information between the
neighbour time series images or other data. In the experi-
ments, a proportion of prediction errors increased when the
harvester machine changed its working state between cutting
and not-cutting, and the others prediction error images ar-
ranged nearly the middle of a series images of a stable work-
ing state. Referring to the contextual information is helpful
for reducing these prediction errors. The extension of this
study will focus on the solution for improving the modelling
accuracy and robustness, modelling the large size of input
data, and discovering the potential information.

5. Conclusions

The analysis and utilization for a large size of time series
data gathered in the agricultural production require an effec-
tive tool. In this study, we apply the machine learning tech-
niques to classify and predict the work states by using the
time series data recorded by the DTS. Three classifiers are
implemented in the experiments for quantitative comparison.
The SVM with RBF kernel shows the best prediction accu-
racy in both two types of classification for all datasets, and its
average F1_score reaches 0.970. The high recongization rate
for the cutting state enables us to make an automatic tool to
compute the working efficiency instead of the manual manip-
ulation, and to elucidate the relationships between the work
efficiency and the condition of the farmland and the crop.
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