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Abstract:    In this paper, we investigate the impacts of 

number of informed nodes on the performance of a 

distributed estimation algorithm, namely adaptive-then-

combine diffusion LMS, based on the data with the 

temporal and spatial independence assumptions. The study 

covers different network models, including the regular, the 

small-world and the random networks. We have two 

scenarios for our simulation. We change the fraction of 

nodes according to their links densities. The simulation 

results indicate that the larger proportion of the uninformed 

nodes (90% in first and up to 50% in second scenarios) in a 

network causes lower convergence besides improvement in 

the mean-square-error performance and that acquiring more 

information is not necessarily better. 
Keywords: Adaptive networks, Diffusion LMS, Mean square 

deviation, Distributed estimation.  

 

1.  Introduction 

Recently distributed signal processing has received much 

attention during the last decade [1-3]. The theory of 

decentralized systems is that the nodes organize themselves 

interacting locally and carry out the computations without 

the necessity of conveying the information to a Fusion 

Center (FC). Each node communicates with neighboring 

nodes -often located within a small range- to exchange their 

information and make decisions [4-5]. Distributed 

estimation is to estimate a vector of interest for each node, 

where the accuracy is improved by accessing to the 

measurements from a subset of its neighbors. This problem 

has been studied in the context of distributed control, 

tracking, in data fusion, and recently in wireless sensor 

networks [6-8]. In many applications, however, we need to 

perform estimation task in a constantly changing 

environment where the statistical information for the 

underlying processes of interest is not available. This 

motivates the development of distributed adaptive 

estimation schemes which are also known as adaptive 

networks. Adaptive networks consist of a collection of 

spatially distributed nodes that are linked together through a 

connection topology and that cooperate with each other 

through local interactions [9-10].  By means of cooperative 

processing in combination with adaptive filtering per node 

enables the entire network and also each individual node to 

track not only the variations of the environment but also the 

topology of the network [11]. Generally, according to the 

approach by which the nodes communicate with each other, 

distributed estimation schemes can be classified into 

incremental algorithms and diffusion algorithms (and also 

their probabilities).  In the incremental mode, a cyclic path 

through the network is required, and nodes communicate 

with neighbors within this path. The incremental LMS, 

incremental RLS, incremental techniques based on the 

affine projection algorithm, parallel projections, and 

randomized incremental protocols are examples of 

incremental adaptive networks [9-10], [12-13]. The 

diffusion algorithms, however, allow each node to 

communicate with all of its neighbors as reflected by the 

network topology. Typical examples include diffusion LMS 

[11], diffusion RLS [14], and diffusion Kalman filtering 

[15]. As a cyclic pathway is no longer required, these 

algorithms are more preferable in practical engineering. 

The incremental-based networks present excellent 

estimation performance particularly in small size networks, 

while diffusion based networks are more robust to link and 

node failures. 

In the previous works [10-15], the nodes in the network 

were assumed to be homogeneous in that all nodes had 

similar capabilities and were able to have continuous access 

to measurements. However, it is often observed in 

biological networks that the behavior of the network tends 

to be dictated more heavily by a small fraction of the agents, 

as happens with bees that it refers to as heterogeneous 

adaptive networks, where a fraction of the nodes are 

assumed to be informed while the remaining nodes are 

assumed to be uninformed. Informed nodes collect data and 

perform in-network processing, while uninformed nodes 

only participate in the processing tasks [16]. 

Yet, accompanying with the diffusion cooperative protocol 

over heterogeneous networks, a natural question has arisen: 

How does the number of informed nodes over complex 

networks affect the performance of distributed signal 

processing? Besides, answer to this question can help us in 

design the networks. In this work, we focus on the 

adaptive-then-combine (ATC) diffusion LMS, which has 

been proved to be superior to the other diffusion LMS 

algorithms [11]. The mean-square performances over 

different network models, including the regular, the small-

world [17] and the random [18], are compared by numerical 

simulations. We also denote random quantities by boldface 

letters. 

2.  Distributed estimation based on diffusion 

LMS 

We consider a connected network consisting of N nodes 

(Fig.1). Each node k collects scalar measurements dk(i) and 

1 × M regression data vectors uk,i over successive time 
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instants with a positive definite covariance matrix,
*

, , ,u k k i k iR E u u  . Two nodes are said to be neighbors if 

they can share information. The set of neighbors of node k 

including k itself is called the neighborhood of k and is 

denoted by Nk. The measurements across all nodes are 

assumed to be related to a set of unknown M × 1 vectors 

{wo}via a linear regression model of the form [9]:  
0

,( ) ( ), 1,2,...k k i ki w i k N  d u v                                        (1)   

where vk(i) means measurement or model noise with 

variance 
2
,v k   and assumed to be spatially and temporally 

white, i.e., 
* 2

,( ) ( ) . .k l v k kl ijE i j   v v                                                     (2)   

in terms of the Kronecker delta function. The noise vk(i) is 

also assumed to be independent of ul,j for all l and j. All 

random processes are assumed to be zero mean and wo 

denotes the parameter of interest for node k.  

 
Fig. 1. Distributed network with N nodes. {dk(i),uk,i} denotes the time realization for 

each node k. 
 

For example, wo can be the parameter vector of some 

underlying physical phenomenon, the location of a food 

source or a vector modeling different groupings of nodes. 

The nodes in the network are assumed to estimate the 

vectors {wo} by seeking the solution for the following 

minimization cost function: 

2

,
1 1

( ) ( )
N N

k k k i
k k

J w E i w
 

   d u
                                                    (3)   

 

The  objective is to estimate the vector of interest wo from 

the data collected at N nodes spread in the network using 

the ATC diffusion LMS, which is originally proposed by 

[11]. It operates as follows. We assign an N × N matrix C 

with nonnegative entries {cl,k} that are real, non-negative 

constants satisfying: 

,1 1 0, ,     T
l k kC and c if and only if l N                            (4) 

where 1 is a vector of size N with all entries equal to one. 

The entry cl,k denotes the weight on the link connecting 

node l to node k. The ATC algorithm consists of two steps 

namely adaptation and combination(Fig.2). In the 

adaptation step, each node k adaptively updates its estimate, 

denoted as ,k i , with a steepest-descent implementation of 

the mean-square performance. Afterward, in the 

combination step, the node consults its peer nodes within its 

neighborhood and combines their estimates (denoted as 

 , ;l i kl N  , ,k i  where Nk is the set of nodes in the 

neighborhood of node k including itself) by a linear 

function to generate a new estimate uk,i.  

Mathematically, it is implemented as follows[11]: 

*
, , 1 , , , 1
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k

k i k i k k i k k i k i

k i l k l i

l N

u d i u

c
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Fig. 2.  ATC diffusion LMS algorithm. 

 

μk is the positive step-size used by node k. Coefficients cl,k 

govern the node’s cooperative rule, which are determined 

by the network topology. In regard to the combination 

protocols, several models, including the Metropolis rule, 

the relative degree, the Laplacian matrix, and adaptive 

combiners have been suggested. In this paper, we are 

interested in the following Metropolis rule as it is superior 

to the others [11]: 

, ,

\

1/ max( , ) \

1

0

k

k l k

l k l k

l N k

k

n n if l N k

c c if l k

if l N
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where Nk\k denotes the set of nodes in the neighborhood of 

node k excluding itself, nk and nl are the degrees for nodes k 

and l, respectively. To model heterogeneity over the network, 

like in [16], [19], we set μk = 0 if node k is uninformed. In this 

model, uninformed nodes do not perform the adaptation step 

(5a) but continue to perform (5b). 
The mean-square performance of the ATC algorithm was 

studied in detail by applying the energy conservation 

approach in [11] and the network mean-square-deviation 

(MSD) is used to assess how well the network estimates the 

weight vector, w◦. The MSD is defined as follows: 
2

0
,

1

1
lim

N

k i
i

k

MSD E w
N






                                               (7)  

The MSD expression for hetrogeneous adaptive networks is 

as[19]: 
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               (8)   

We observe that the MSD in (45) depends on the network 

topology only through the average degree of the network η. 

Additionally, the MSD in (45) depends on the distribution 

of informed nodes through their degrees, nl, and noise 

variances, 2
,v l  . That is, the effect of different types of 

network models only depends on the degree distribution of 

the nodes.  

We have performed a series of simulations to investigate 

the performance of the diffusion LMS algorithm over 

different kinds of complex networks from the viewpoint of 

mean-square errors. 
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3.  Network models and data generation 

Regular network [20]:  It is generated from a regular 

nearest-neighbor network consisting of N nodes arranged in 

a ring, and each node has 2K nearest neighbors. The 

network corresponds to the original nearest-neighbor 

network when p = 0. 

Small-world and random networks: In order to describe 

the transition from a regular lattice to a random graph, 

Watts and Strogatz proposed an interesting small-world 

network model, termed as WS small-world network. Links 

are then modified by rewiring one end to another node with 

a probability p while keeping another end unchanged. 

Nevertheless, no two nodes are allowed to be connected by 

more than one link. The network corresponds to the original 

nearest-neighbor network when almost like the ER random 

graph when p = 1.0. The degree distribution of the small-

world network (0 < p < 1) follows a Poisson-like 

distribution. It peaks at an average value and decays 

exponentially. Such a network is also called homogenous 

network, as each node has nearly the same number of link 

connections. 

For data generation model, we used these assumptions: 

1) uk,i is independent of uℓ,i for k  l (spatial independence). 

2) For every k, the sequence {uk,i} is independent over time 

(time independence). 

3) The regressors {uk,i} arise from a source with circular 

Gaussian distribution with covariance matrix Ru,k.  

 

4.  Simulation Results 
We now apply the ATC diffusion LMS algorithm to 

estimate the unknown vector wo from the data {dk(i),uk,i} 

across all the N nodes in different kinds of complex 

heterogeneous adaptive networks. The small-world 

networks are generated by the WS algorithm with K = 2 

and p = 0.1. The initial regular network (p = 0) and random 

network (p = 1.0) are also used for comparison. The 

measurements were generated according to model (1), and 

the regressors uk,i were chosen Gaussian iid. The step size 

for informed nodes is set to 0.06 and size of the unknown 

vector w0 is M=4 and variance of noise is set to 0.01. The 

results were averaged over 20 experiments. In Figs. 3-9, we 

show the effect of the number of informed nodes on the 

convergence factor and the MSD of the network. We 

increase the number of uninformed nodes, according to the 

highest density, i.e., from node 10% to node 90% in the 

regular model and up to 50% in other ones. The simulation 

results indicate that the larger the proportion of informed 

nodes in a network cause faster convergence rate at the cost 

of falling in the mean-square-error performance for ideal 

links and this is true for different number of neighbors.  

 

 
Fig.3.Transient network MSD in the regular model for different informed 

nodes. 

 
Fig.4.steady state of network MSD in the regular model for different 

informed nodes. 
 

 
 
Fig.5.steady state of network MSD in the regular model with full connected 

for different informed nodes. 
 

 
Fig.6. steady state of network MSD in the WS model with four neighbors 

for different informed nodes. 
 

 
Fig.7.steady state of network MSD in the regular model with full connected 

for different informed nodes. 
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Fig.8. steady state of network MSD in the Random model with six 

neighbors for different informed nodes. 
 

 
Fig.9. steady state of network MSD in the Random model with full 

connected for different informed nodes. 
 

5.  Conclusion  

In this paper, we have investigated the performance of the 

ATC diffusion LMS algorithm over different heterogeneous 

network models from the viewpoints of mean-square 

performance. The results have shown that the larger the 

proportion of informed nodes in a network cause faster 

convergence rate at the cost of falling in the mean-square-

error performance for ideal links. This fact helps us to 

design the networks and reach better steady state of MSD 

without increasing link density especially about the regular 

model.  
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