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Abstract: The use of massive multiple-input multiple-output
(m-MIMO) systems has been considered as one of key tech-
nologies in advanced wireless communication systems. How-
ever, it may need to employ an energy-efficient transmission
technique. The energy efficiency can be improved by using
a minimal number of transmit antennas enough to provide
desired performance. However, it may require large com-
putational complexity to optimally schedule a set of trans-
mit antennas. In this paper, we consider minimal use of m-
MIMO antennas with power control without large computa-
tional complexity. We determine the number of transmit an-
tennas and the corresponding antenna subset by exploiting av-
erage channel information. We also adjust the transmit power
and the spatial multiplexing order to provide desired perfor-
mance. Finally, we verify the proposed scheme by computer
simulation.1
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1. Introduction
The use of massive multiple-input multiple-output (m-

MIMO) has widely been considered as one of the key tech-
nologies in advanced wireless communication systems due to
the advantages of large-scale antennas [1]. However, the use
of a large number of antennas may increase the power con-
sumption of antenna circuitry, which may offset the transmit
power saving through m-MIMO transmission. As a matter of
fact, it may be desirable to consider the total power consump-
tion, i.e., the power consumption of signal transmission and
antenna circuitry.

Recently, a few research works have considered partial
use of m-MIMO antennas to maximize energy efficiency [2]-
[3]. However, they may require a large number of iteration
processes, making it infeasible in m-MIMO environments.
It may be desirable for energy efficiency to schedule trans-
mit antennas without large complexity in m-MIMO environ-
ments.

In this paper, we consider the antenna scheduling with
power control for energy-efficient transmission in m-MIMO
environments. We first determine the number of transmit an-
tennas to minimize the total power consumption in a subop-
timal manner. Showing that the total power consumption is
a monotonically decreasing function of the Frobenius norm
of the channel, we select a set of antennas to maximize the
Frobenius norm. For a selected set of transmit antennas, we
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can formulate minimizing the total power consumption as a
convex problem. Finally, we adjust the transmit power and
the spatial multiplexing order by exploiting the KarushKuhn-
Tucker (KKT) condition [4].

The rest of this paper is organized as follows. The sys-
tems model is described in Section 2. The proposed energy-
efficient transmission scheme is described in Sections 3. The
performance of the proposed scheme is verified by computer
simulation in Section 4. Finally, conclusions are summarized
in Section 5.

2. System Model
Consider the downlink transmission in a m-MIMO envi-

ronment, where a base station (BS) has NT transmit antennas
and each user have NR receive antennas. We assume that
the BS has perfect channel state information (CSI) of users
and transmits the signal using NT,sel (≤ NT ) antennas. Let
SNT,sel be a set of all NT,sel-transmit antenna subsets, de-
noted by SNT,sel ≡

{
Ω
NT,sel

1 , . . . ,Ω
NT,sel

NT
CNT,sel

}, and H
NT,sel

l

be the channel matrix from the BS to a user, formed by the l-
th antenna subset of SNT,sel , Ω

NT,sel

l . Assume that M beams
are transmitted through antenna subset Ω

NT,sel

l . The signal
received by the user can be represented as

y =
√
αWHHlFx + WHn, (1)

where y is the (M × 1) received signal vector, α is the path
loss from the BS to the user, W is the (NR ×M) receive
combining matrix and F is the (NT,sel ×M) precoding ma-
trix, Hl is the (NR ×NT,sel) channel matrix from the BS to
the user, x is the symbol vector, and n is zero-mean complex
circular-symmetric additive white Gaussian noise (AWGN).

We consider the signal transmission by means of singu-
lar value decomposition (SVD)-based spatial multiplexing. It
can be shown that W and F are unitary matrices, and that the
achievable transmission rate through the m-th beam can be
represented as

Cm = log2

(
1 +

ασ2
l,mpt,m

σ2
n

)
, (2)

where σ2
l,m is them-th eigenvalue of HlH

H
l , pt,m is the trans-

mit power allocated to the m-th beam and σ2
n is the noise

power.
The total power consumption by an antenna module can be

represented as [5]
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Ptotal =
M∑
m=1

pt,m+PRFNT,sel+Pidle (NT −NT,sel)+Psyn,

(3)
where PRF is the power consumption by the antenna cir-
cuitry including digital-to-analog converters, mixers and fil-
ters, Pidle is the power consumption of antenna circuitry in
an idle mode, and Psyn is the power consumption by the fre-
quency synthesizer (i.e., local oscillator) [5]. We define the
energy efficiency by the ratio of the achievable transmission
rate and the total power consumption by the antenna module,
represented as [5]

η =

B
M∑
m=1

Cm

Ptotal
(bits/Joule) , (4)

where B denotes the signal bandwidth.

3. Proposed m-MIMO Transmission
We consider the scheduling of m-MIMO antennas, and the

adjustment of spatial multiplexing order and transmit power
to provide the required transmission rate Creq in an energy-
efficient manner. The optimal solution maximizing the energy
efficiency can be found through the exhaustive search. In-
stead, we consider the derivation of a solution in a suboptimal
manner. To this end, we first determine the number of trans-
mit antennas, N̂T,sel, and the corresponding transmit antenna
subset. Then, we adjust the transmit power and the spatial
multiplexing order.

3.1 Antenna Scheduling

We can determine the number of transmit antennas to min-
imize the total power consumption as

min
M∑
m=1

(2Cm−1)σ2
n

ασ2
l,m

+ ∆PNT,sel + Pstatic

s.t.
M∑
m=1

Cm ≥ Creq,
(5)

where ∆P = PRF − Pidle, Pstatic = PidleNT + Psyn, the
first term of (5) is the power consumption for the signal trans-
mission, and the rest two terms are the power consumption
by antenna circuitry. It can be conjectured that the power
consumption by the antenna circuitry is an affine function of
NT,sel. However, it may not be easy to conjecture the re-
lation between the power consumption for the signal trans-
mission and NT,sel. Instead, we estimate the transmit power
consumption in an average sense.

The transmission of M beams with {σ2
1 , ..., σ

2
M} can ap-

proximately be interpreted as one with an average eigen-

value of σ2
l =

M∑
m=1

σ2
l,m/M . The average rate is defined as

C = log2

(
1 +

ασ2
l,mpt,m
σ2
n

)
, where pt is the average transmit

power. The problem (5) can be reformulated as

min P̃total = Γ(M)
σ2
l

+ ∆PNT,sel

s.t. C ≥ Creq/M,
(6)

where Γ (M) ≡ σ2
l

M∑
m=1

pt =
Mσ2

n

α

(
2C − 1

)
, and Pstatic

is omitted since it is a constant. Since P̃total in (6) is an
increasing function of C, and the inequality constraint is a
convex set, it can be conjectured that the solution can be
obtained when the inequality constraint satisfies the equality
(i.e., C = Creq/M ) [4].

It can be shown that the average σ2
l over Hl can be repre-

sented as [refer to Appendix]

E
[
σ2
l

]
≈

[
1 +

√
(NR −M)

M

(
1

E [cos2 (θl)]
− 1

)]
NT,sel

= Ψ (M)NT,sel. (7)

The total power P̃total (NT,sel,M) in (6) can be further
simplified to

P total (NT,sel,M) =
Γ (M)

Ψ (M)

1

NT,sel
+ ∆PNT,sel. (8)

Since P total (NT,sel,M) is a convex function of NT,sel, it
can be shown from∇NT,sel

P total (NT,sel,M) = 0 that

N∗T,sel (M) =

⌊√
Γ (M)

Ψ (M)

1

∆P

⌋
. (9)

It can be seen that P total (NT,sel,M) in (8) is a function
of M . Thus, N∗T,sel can be determined by finding M∗ mini-
mizing P total (M) can be found as

M∗ = arg min
1≤M≤NR

Γ(M)
Ψ(M)N∗

T,sel
+ ∆PN∗T,sel (M). (10)

We can sub-optimally determine the transmit antenna size
as N̂T,sel = N∗T,sel (M

∗). It can be seen from (6), (22), and
the approximated eigenvalue in [6, Theorem 2.2] that P̃total
is a monotonically decreasing function of ||Hl||2F . The cor-
responding antenna subset can be determined by choosing
transmit antennas that maximize ||Hl||2F as

Ĥl = arg max
Hl∈SN̂T,sel

||Hl||2F . (11)

3.2 Power Control and Beam Selection

For a selected set of transmit antennas, we consider the op-
timization of pt,m and M . It can be shown from (5) that opti-

mizing Pt

(
= [pt,1, . . . , pt,M ]

T
)

is equivalent to optimizing

C
(

= [C1, . . . , CM ]
T
)

. Thus, C can be optimized as
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min P̂t (C) =
M∑
m=1

(2Cm−1)σ2
n

ασ̂2
l,m

s.t.
M∑
m=1

Cm ≥ Creq,
(12)

where σ̂2
l,m denotes the m-th eigenvalue of ĤlĤ

H
l . P̂t (C) is

a strictly convex function of C and the inequality constraint
in (12) is a convex set [4], implying that (12) is a convex prob-
lem. Thus, in the similar way in [4], C can be optimized as

Ĉm =

[
log2

(
µ̂ασ̂2

l,m

(log 2)σ2
n

)]+

, (13)

where x+ = max (x, 0), and µ̂ is the Lagrange multiplier
which can be determined to provide the required rate as

Creq =
M̂∑
m=1

[
log2

(
µ̂ασ̂2

l,m

(log 2)σ2
n

)]+
. From (13), M̂ can be de-

termined and p̂t,m can be obtained as

(
2Ĉm−1

)
σ2
n

ασ̂2
l,m

as in [4].

3.3 Computational Complexity

We measure the computational complexity of the proposed
scheme in terms of the FLOP [7]. For fair comparison, we
also measure the complexity of the optimal scheduling (OS).
The OS exhaustively searches all possible sets of transmit an-
tennas and the corresponding antenna subset. Since the sin-
gular value calculation of an (m× n) matrix approximately
requires

(
2mn2 + 2n3

)
FLOPs [7], it can easily be shown

that the computational complexity of each scheduling scheme
can be represented as

ξOS =

NT∑
NOS=1

(
NT
NOS

)(
2NRN

2
OS + 2N3

OS

)
, (14)

where NOS is the number of antennas used by the OS.

ξPROP =

{
NT (2NR − 1) , if NT,sel 6= NT
0, if NT,sel = NT .

(15)

4. Performance Evaluation
We evaluate the performance of the proposed scheme by

computer simulation. We assume that the signal bandwidth
B is set to 180 kHz, users are equipped with 4 receive anten-
nas, the path loss follows the 3GPP channel model [8] and the
small-scale channel is subject to Rayleigh fading. The ther-
mal noise density is set to −174 dBm/Hz. The system SNR
is set to 15 dB. The parameters associated with the antenna
circuitry are set as [5].

Fig. 1 depicts the average number of transmit antennas
used for the signal transmission and the multiplexing order
according to the required rate when NT = 64. It can be
seen that the proposed scheduling uses almost the same num-
ber of antennas and spatial multiplexing order as the optimal
scheduling.
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(a) Average number of transmit antennas
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(b) Average multiplexing order

Figure 1. Average number of transmit antennas and multiplex-
ing order for transmission.

Fig. 2 depicts the energy efficiency according to the trans-
mit antenna size NT when the required rate is 9 bps/Hz. For
comparison, we also consider the energy efficiency of full
antenna use (i.e., no scheduling), random scheduling of an
antenna subset, and the optimal scheduling. The proposed
power control is applied to all the schemes. It can be seen
that the proposed scheduling provides energy efficiency quite
similar to the optimal scheduling, while significantly outper-
forming the other two schemes.

Fig. 3 depicts the computational complexity of the pro-
posed and the optimal scheduling according to the transmit
antenna size NT . It can be seen that the complexity of the
proposed scheduling increases almost linearly proportional to
NT , while the optimal scheduling increases almost exponen-
tially proportional to NT .

5. Conclusions
In this paper, we have considered the energy-efficient

transmission in m-MIMO environments. Considering the
power consumption of transmit antenna circuitry in addition
to the transmit power, we have considered partial use of m-
MIMO antennas by exploiting the average channel informa-
tion. We have also considered the management of transmit
power and spatial multiplexing order to minimize the total
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Figure 2. Energy efficiency.
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Figure 3. Computational complexity.

power consumption. The numerical results show that the pro-
posed scheme can provide performance similar to the optimal
scheme, while significantly reducing the computational com-
plexity.

Appendix
To obtain the relation between E

[
tr
[(
HlH

H
l

)]]
and

E
[(
tr
[(
HlH

H
l

)])2]
, we use the inner product of Hermitian

matrices, defined as 〈A,B〉 = tr [AB] [6]. Let θl be the
angle between the Hermitian matrix HlH

H
l and the identity

matrix in a space of (NR ×NR), INR
. From the inner prod-

uct of HlH
H
l and INR

, it can be seen that

tr
[(
HlH

H
l

)2]
=

1

NR cos2 θl

(
tr
[(
HlH

H
l

)])2
. (16)

Using the fact that eigenvalues of HlH
H
l are non-

negative, it can easily be shown that tr
[(
HlH

H
l

)2] ≤(
tr
[(
HlH

H
l

)])2
. Thus, it can be seen that

1

NR
≤ cos2 θl. (17)

It can also be seen from Cauchy-Schwartz inequality that

(
tr
[(
HlH

H
l

)])2
=

(
rank(Hl)∑
m=1

σ2
l,m

)2

≤

(
rank(Hl)∑
m=1

(
σ2
l,m

)2
)(

rank(Hl)∑
m=1

12

)
= tr

[(
HlH

H
l

)2]
rank (Hl) .

(18)
Thus, it can be shown that

cos2 θl ≤
rank (Hl)

NR
. (19)

From (17) and (19), it can be shown that

E
[
cos2 θl

]
=

sin(2θup
l )−sin(2θlowl )

4(θup
l −θ

low
l )

+ 1
2 . (20)

By averaging both sides of (16), it can be expressed as

E
[
tr
[(
HlH

H
l

)2]] ≈ 1

NRE [cos2 θl]
E
[(
tr
[(
HlH

H
l

)])2]
. (21)

Finally, it can be seen from the approximated eigenvalue in
[6, Theorem 2.2], (21), and E

[
tr
[(
HlH

H
l

)]]
≈ NRNT,sel

[1] that

E
[
σ2
l

]
≈

[
1 +

√
(NR −M)

M

(
1

E [cos2 (θl)]
− 1

)]
. (22)
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