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Abstract—Kelvin predicted that the semi-angle of the V-

shaped wedge behind a ship moving in deep water region is 
𝟏𝟏𝟏𝟏.𝟓𝟓°, independent of the ship’s velocity. The predication has 
been challenged recently that the semi-angle would transit from 
the Kelvin angle to the Mach angle as the ship’s velocity 
increases. In this paper, we show the graphene plasmons excited 
by a swift charged particle would have the similar phenomenon. 
When the velocity of the charged particle is relatively slow, the 
graphene plasmons excited would accumulate along the caustic 
boundary of the graphene plasmons pattern, forming the 
plasmonic Kelvin angle. At large velocity, however, no graphene 
plasmons would accumulate along any boundary, thereby the 
caustics disappear and the effective semi-angle of the graphene 
plasmons approaches the Mach angle.  
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I. INTRODUCTION  
Lord Kelvin predicted that the wave pattern generated 

behind a boat on the water’s surface would form a V-shape 
with a fixed semi-angle of 19.5° that is independent of the 
ship’s velocity [1, 2]. However, the argument was recently 
challenged that the semi-angle of the wave pattern would 
transit from the Kelvin angle to the Mach angle as the ship’s 
velocity increases [3, 4]. This phenomenon is not unique in 
deep water waves, and we find its counterpart in graphene 
plasmons, one kind of two-dimensional (2D) plasmons. The 
fact that 2D plasmons exhibit a dispersion similar to that of 
deep-water waves in the long wavelength limit has already 
been known for more than fifty years [5]. This implies that 
many deep-water-wave phenomena can find counterparts in 
graphene plasmons. 

The caustic wave theory is adopted to study the wave 
focus effect along the boundary. Caustics are a boundary, 
across which there is a jump-wise variation of the number of 
rays reaching each point [6]. We find that at a relatively small 
velocity (~0.1𝑐𝑐 or smaller, where 𝑐𝑐 is the velocity of light in 
vacuum) of the swift charged particle, the stimulated 
graphene plasmons are confined within the caustic 
boundaries with a semi-angle of 19.5°, i.e., the Kelvin angle. 
Each point within the caustic boundaries is covered twice by 
rays, whereas outside there is no ray. As the velocity of the 
charged particle increases, the graphene-plasmonic rays 
reaching the caustic boundaries become weak, which blurs 
and eventually eliminates the caustics. The calculation shows 

the effective semi-angle of the plasmonic ship-wake 
approaches the Mach angle, being similar to the recent studies 
of ship waves in fluid mechanics.  

II. THEORETICAL MODEL 
The calculation model is shown in Fig. 1, where a particle 

with charge 𝑞𝑞  moves along �̂�𝑧  direction with a uniform 
velocity 𝑣𝑣  parallel to an isolated graphene sheet at 𝑦𝑦 = 𝑑𝑑 . 
The current density that this charged particle produces is  

 ( ) ( ) ( ) ( )ˆ, zt qv x y z vtδ δ δ= −J r   (1) 

The evanescent fields from the swift charged particle can 
excite graphene plasmons on graphene. In the calculation we 
set 𝑑𝑑 = 1µm . The isolated graphene is assumed to have 
chemical potential 𝜇𝜇𝑐𝑐 = 0.15eV , and scattering rate Γ =
0.11meV  at the room temperature 𝑇𝑇 = 300K  [7]. The 
frequency dependent complex conductivity 𝜎𝜎(𝜔𝜔)  of the 
isolated graphene is computed from Kubo formula [7, 8]. 
With the prescribed parameters, the intraband conductivity 
dominates.  

We first make Fourier transform of (1) to get the current 
density at each frequency as  

 

Fig.1 The plasmonic ship-wake on graphene excited by a charged 
particle moving along the z-direction with a constant velocity 𝑣𝑣.The 
distance between the graphene and the particle is 𝑑𝑑.  
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where 𝜌𝜌 = �𝑥𝑥2 + 𝑦𝑦2 . Each frequency component of the 
graphene plasmons can be exactly derived by taking the 
residue of Sommerfeld pole [9, 10]. The vertical component 
of electrical field 𝐸𝐸𝑦𝑦  is used to represent the transverse-
magnetic (TM) graphene plasmons 
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where 𝑘𝑘𝑦𝑦 = −2𝜔𝜔𝜀𝜀0 𝜎𝜎(𝜔𝜔)⁄  indicates the confinement of 
graphene plasmons, 𝑘𝑘𝑧𝑧 = 𝜔𝜔 𝑣𝑣⁄  and 𝑘𝑘𝑥𝑥 =
�𝜔𝜔2𝜀𝜀0𝜇𝜇0 − 𝑘𝑘𝑦𝑦2 − 𝑘𝑘𝑧𝑧2  are the wave vectors of the graphene 
plasmons, and 𝜀𝜀0  and 𝜇𝜇0  are the constitutive parameters of 
vacuum. The field distribution at time 𝑡𝑡 is the Fourier integral 
of   
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We numerically carry out the integration in (4) to get the 
wave patterns. At first, we set the velocity of the particle to 
be 𝑣𝑣 = 0.1𝑐𝑐. The results are shown in Fig. 2a. The top part is 
the absolute value of the electrical field �𝐸𝐸𝑦𝑦(𝑟𝑟, 𝑡𝑡)� and the 
bottom part is the absolute value of the total electrical field 
|𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟, 𝑡𝑡)|. The arrow indicates the position of the charged 
particle. The semi-angle of  19.5°, i.e., the Kelvin angle, is 
clearly seen. A plane-like wave is inside the wave pattern.  

We can get an intuitive picture by combining the ray 
theory and Kelvin’s model for Kelvin wedge [1, 2]. As shown 
in Fig. 2b. When the particle moves from point A to point B 
with velocity 𝑣𝑣 . The ship waves of graphene plasmons 
excited at point A will propagate in all directions with 
different frequencies. In the propagation direction of angle 
𝜃𝜃(as indicated in Fig. 2b), where cos𝜃𝜃 = 𝑘𝑘𝑧𝑧 �𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑧𝑧2⁄ , the 
phase velocity 𝑣𝑣𝑝𝑝  of graphene plasmons must satisfy the 
stationary condition 𝑣𝑣𝑝𝑝 = 𝑣𝑣cos𝜃𝜃(ω) [1, 2]. When the particle 
arrives at point B, the dashed blue circle represents the loci of 
all the arrived phases of graphene plasmon waves. However, 
the group velocity 𝑣𝑣𝑔𝑔 is only about half of the phase velocity 
𝑣𝑣𝑝𝑝,  thus the loci of the energy of arrived waves form the solid 
blue circle with the diameter only half of the blue dashed one. 
The waves propagating in the direction 𝜃𝜃 = 35°  form the 
Kelvin caustic boundary with angle α = sin−1(1 3⁄ ) =
19.5°, as shown by the solid black lines in Figs. 2b and c. 

The integral in (4) can be evaluated asymptotically with 
the stationary phase methods [2]. The stationary value 𝜔𝜔 =
𝜔𝜔𝑠𝑠  is calculated with 𝑑𝑑𝑑𝑑(𝜔𝜔)
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integral in (4) can be approximated as 
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Equation (5) diverges when 𝜓𝜓”(𝜔𝜔) = 0. In this case the path 
of steepest descent has to be chosen differently.  It can be 
shown that for the frequency component 𝜔𝜔 = 𝜔𝜔𝑐𝑐, where 
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Fig. 2. The plasmonic ship-wake excited by a swift charged particle with 
velocity 𝑣𝑣 = 0.1𝑐𝑐 . (a) The absolute value of electric field �𝐸𝐸𝑦𝑦(𝑟𝑟, 𝑡𝑡)� 
(top) and the absolute value of the total electrical field |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟, 𝑡𝑡)| 
(bottom) of the wave patterns. (b) The mathematical model to determine 
the Kelvin angle. (c) The field distribution along in the neighborhood of 
caustic. 

 

644



  
the rays run together near such points, and the loci of such 
points form caustics or a caustic boundary, which separates a 
region without rays from another region covered twice by 
rays. The black solid line in Fig. 2 c shows the caustic 
boundary. When 𝑣𝑣 = 0.1𝑐𝑐, the exact angle of the caustics is 
α = 19.5°.  

With the caustic wave theory, the asymptotic form of 
𝐸𝐸𝑦𝑦(𝑦𝑦, 𝑡𝑡) can be calculated with Airy integral, 
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where Ai(X) is the Airy integral function and 
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When X = 0, (8) represents the caustic boundary. When X >
0, (8) represents the caustic shadow region, where, because 
of the Airy function, the field decays exponentially. When 
X = 0.66 , Airy function reaches 1 𝑒𝑒⁄  of the its maximum 
value. We set X = 0.66  to represent the boundary of the 
caustic shadow, as shown by the dashed black line in Fig. 2c. 
The Airy function reaches maximum at X = −1.02 . The 
region between X = 0  and X = −1.02  corresponds to the 
caustic zone. The field in the caustic zone is relatively strong 
in the neighborhood of caustics as the wave-field focusing 
effect on caustics [6]. The field focusing in the caustic zone 
can be observed in Fig. 2a near the caustic boundary. The 
Airy function vanishes at X = −2.34 . It means the field 
distribution has a minimum value, as shown by the dashed 
cyan line in Fig. 2c.  

The wave pattern of graphene plasmons excited by the swift 
charged particle with velocities 0.5𝑐𝑐 and 0.7𝑐𝑐 are shown in 
Figs. 3a and b, respectively. The outmost perceivable fields 
at large velocities of the particle are contributed by waves 
with large propagation angle 𝜃𝜃 , corresponding to group 
velocity 𝑣𝑣𝑔𝑔′ . It can be shown that as the particle’s velocity 𝑣𝑣 
increases, 𝑣𝑣𝑔𝑔′  tends to be independent of 𝑣𝑣 . Therefore, 𝛼𝛼 ≈
𝑣𝑣𝑔𝑔′/v ∝ 1 𝑣𝑣⁄  and the effective semi-angle of the wave pattern 
behaves like Mack angle. In Fig. 2a, we find that in the 
horizontal line 𝑧𝑧 = 0, the absolute of the total electrical field 
at the caustic point is 0.6 relative to its maximum value along 
the line. We use this as a  

criterion to determine the angle of the ship waves at different 
velocities of the charged particle, and the results are shown in 
Fig. 3c. We plot the Mach angle line 𝛼𝛼 = 4.5 𝑣𝑣⁄  with the 
coefficient 4.5 adopted from the wave pattern when the 
particle’s velocity is 0.9c . The results show clearly the 
transition from the Kelvin angle of 19.5° at small velocities 
of 

the charged particle to the Mach angle at large velocities, 
being similar to the recent studies in fluid mechanics [3, 4].  

III. CONCLUSION 
In conclusion, we incorporate the recent development in 

fluid mechanics and the caustic wave theory to study of 
graphene plasmon excitation, and reveal a novel wave 
phenomenon of graphene plasmons. We find that graphene 
plasmons excited by a swift charged particle moving above 
graphene can form a caustic wave pattern with the semi-angle 
equal to the Kelvin angle, when the velocity of the charged 
particle is slow. At large velocities, the effective semi-angle 
of graphene plasmons approaches the Mach angle.  

 
Fig. 3 The plasmonic ship-wake excited by a swift charged particle 
with velocity 𝑣𝑣 = (𝑎𝑎) 0.5𝑐𝑐  and (𝑏𝑏) 0.7𝑐𝑐 .The absolute value of 
electric field �𝐸𝐸𝑦𝑦(𝑟𝑟, 𝑡𝑡)�  (top) and the absolute value of the total 
electrical field |𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟, 𝑡𝑡)|  (bottom) of the wave patterns. (c) The 
semi-angle change from Kelvin angle to Mach angle as the particle’s 
velocity increases. 
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