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Abstract—In this paper we point out the similarities between
measurements performed in a reverberation chamber and the
numerical method of Monte Carlo integration. Further, the cor-
responding measurements in anechoic chambers will be viewed
as Riemann-type of integration.

The insight that reverberation chamber measurements share
many similarities with Monte Carlo integrations is not of pure
academic interest. It opens up to utilize many of the methods
developed in computational physics and statistics to speed up
Monte Carlo integrations. Some of these techniques will be
discussed here together with applications.

Index Terms—reverberation chamber, OTA, Monte Carlo,
variance reduction, antenna testing

I. INTRODUCTION

Mobile antenna measurements can be divided into active
and passive measurements. Passive measurements consists of
characterizing antennas designed for mobile communication.
Typically sought parameters are efficiency and diversity gain.
In active measurements, the antenna is integrated in a powered
device, such as a smartphone. Total radiated power and total
radiated sensitivity are measured and characterize the whole
receiver or transmitter chain, including antennas and amplifiers
[1] [2] [3], [4].

The antenna diagram plays a central role in both active
and passive over-the-air measurements. The antenna diagram
is often denoted

Ḡ(θ, ϕ) = θ̂Gθ(θ, ϕ) + ϕ̂Gϕ(θ, ϕ),

where Ḡ is the complex vector-valued antenna diagram con-
taining information about both θ- and ϕ-polarization via Gθ

and Gϕ. Amplitude and phase of the radiation is captured in
the complex values of these functions. However, in the figures
of merit listed above, Ḡ does not figure directly, but rather the
integral over Ḡ, or some similar quantity such as:

FoM ∼
∫∫

4π

|Ḡ|2 · dr̂.

It is well known that an integral can be computed in
a number of different ways, and numerically two common
methods are the Riemann-approximation and the Monte Carlo-
approximation. Further, the computational techniques of the
Riemann approximation will be identified with measurements
in the AC, while the Monte Carlo techniques will be identified
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Fig. 1. Example of a region, D, over which I is approximated using a
Riemann-sum with a grid indicated by the blue dots (left) and where the
corresponding Monte Carlo approximation is used (right). The rectangular
block illustrates one volume element, hi · f(xi, yi), in the sum.

with measurements in the RC. Applications of these identifi-
cations will be discussed.

In general terms

I =

∫
D

f dx (1)

where I denote the integral and f the integrand. The region of
integration is denoted by D and the integration measure by dx.
We consider the general case where the dimensionality of these
quantities is left open and denoted by d, and the function f is
a smooth function. If one wishes to evaluate I in equation (1)
numerically one can utilize the Riemann approximation which
says that

IRiemann
N =

∑
DN

hi · f(xi) → I, N → ∞, (2)

where DN denote a regular lattice of D with area elements hi

centered around the xi points. The approximation is illustrated
for a two dimensional case to the left in figure 1.

Another way to compute I in equation (1) is by using the
fact that for a random variable, X , with a probability density
function pX(x),

I =

∫
f(x)dx =

∫
f(x)

pX(x)
pX(x)dx = E

[
f(X)

pX(X)

]
, (3)

where E[·] denote the expectation.
Let

g(x) =
f(x)

p(x)
.
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An estimate of E[g(X)] is the mean, m. Thus, the integral I
can be approximated using

IMC
N = m =

1

N

∑
i

g(xi) (4)

where xi are samples from the random variable X . This is
illustrated to the right in figure 1. For this to work, pX(x) ̸=
0∀x : f(x) ̸= 0 must hold. This method of estimating I is
known as the Monte Carlo method [?].

A. Convergence

It is well known that the two approximations found in
equations (2) and (4) have different convergence speed where
the error in IRiemann

N is O(1/N1/d) and in IMC
N it is O(1/

√
N)

(this is from the standard deviation).
Thus, if the dimensionality of the integral is larger than 2, it

is in general beneficial to perform a Monte Carlo integration
in favor of a Riemann type of approximation. In the case of
antenna measurements, the antenna diagram has the signature

Ḡ : R2 → C2,

and hence the two methods have the same convergence speed
with respect to the number of samples.

II. ANTENNA MEASUREMENTS

Measurements performed in an anechoic chamber are easily
identified with a Riemann type of approximation to the integral
and thus this case does not require much analysis. Hence the
theory of Riemann integration with e.g. error estimation hold
for measurements in an AC directly. The antenna, or device
under test is sampled in all directions by rotating it over the
whole sphere in fixed steps. By using absorbing material on
the chamber walls, only radiation propagating in the line-of-
sight between the device under test and a test probe antenna
contribute to the transfer function in each rotation state of
the device under test. Thus the scenario is very similar to the
situation in a Riemann integration.

For the reverberation chamber, on the other hand, the con-
nection is not quite as straight forward. The relation between
a measurement in a reverberation chamber and a Monte Carlo
integration will be discussed next.

A reverberation chamber consists of a large (in wavelengths)
metal cavity and for a specific measurement frequency, many
modes are excited in the chamber. The boundary conditions of
the cavity are modified in a stochastic manner by moving so
called stirrers, which are large metal objects, in the chamber.
This generates a transfer function between antennas positioned
in the chamber which fluctuates stochastically.

Consider the simplest type of antenna measurement per-
formed in a reverberation chamber, an efficiency measurement.
A VNA is connected to the reverberation chamber and the
antenna under test is mounted in the chamber according to
figure 2. For each stirrer position, the received signal does not
correspond to a specific G(Θ,Φ), but can rather be modeled

VNA 1 2 3 4

Reverberation chamber

AUT

Fig. 2. Set-up for efficiency measurement of an antenna in a reverberation
chamber.

as a superposition of several directions so that the received
signal in a mode stirrer positions i is

gi =

M(i)∑
j=1

α
(i)
j,θGθ(θ

(i)
j , ϕ

(i)
j ) + α

(i)
j,ϕGϕ(θ

(i)
j , ϕ

(i)
j ) (5)

where α
(i)
j,θ|ϕ, θ(i)j and ϕ

(i)
j are random variables. M (i) denote

the number of plane waves excited in the chamber and is
related to the number of modes excited. Due to the design
of the reverberation chamber (for a well designed chamber
with high isotropy) it can be argued that incidence angles
should be uniformly distributed over the sphere and hence ϕj

has a uniform distribution over (−π, π] and θj is distributed
according to the probability density function f(θ) ∼ sin(θ)
for all i and j. The coefficients αj,θ and αj,ϕ are independent
identically distributed in a well designed chamber (polarization
balanced chamber) and are related to the coupling of the
antenna to the modes in the chamber.

The coupling coefficients, α, can be expected to be dis-
tributed according to argα ∼ U(0, 2π) and |α| ∼ U(0, L),
where L is related to the loss in the chamber. This yields
E(α) = 0 and Var(α) = E(αα∗) = 2π

3 L. If the chamber
is over-moded as it should be, that is M (i) in equation (5)
is large, then via the central limits theorem it can be ar-
gued that gi ∼ CN (0, σ2). Hence |gi| ∼ Rayleigh(σ) and
|gi|2 ∼ Exp(1/2σ2).

Via a simple computation and linearity of expectation and
that cross-terms in equation (5) are IID and has expectation
zero it is seen that

σ2 = E(gi − 0)(gi − 0)∗) =
= E(αα∗)

∫ ∫
|Gθ|2(θ, ϕ) + |Gϕ|2(θ, ϕ) sin θdθdϕ =

= E(αα∗)e

where e denote the antenna efficiency. This is the formula
used for computing antenna efficiency from an RC measure-
ment. The term E(αα∗) is obtained via a so called reference
measurement using an antenna with known efficiency.

In greater detail, the convergence speed of the Monte Carlo
integration is actually √

σ2

N
(6)
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where σ2 is the variance of the random variable to be sampled.
In general one is interested in the relative error. For an expo-
nential distribution, the variance is the same as the expectation
and hence can be normalized by the average chamber loss.

In this sense, a measurement in an RC can be identified
with an MC integration. The identification is not as straight
forward as in the Riemann/AC case due to the sum appearing
in equation (5). However, much of the theory applicable to
Monte Carlo integration can be applied also on measurements
in RCs.

III. APPLICATION

The identification developed above can be applied to im-
prove reverberation chamber performance. One such perfor-
mance improvement is to use the rather large knowledge base
that exists in computational Monte Carlo integration to speed
up the integration, that is, reduce the required number of
samples for the same accuracy.

There are several techniques to make a Monte Carlo inte-
gration converge faster, see e.g. [5]. The most well known are
the control variate method, importance sampling, antithetic
variables and common random numbers.

As an example, consider the method of control variate. Here
we review the general control variate method, and later apply it
to antenna measurements. Let µ denote an unknown parameter
of interest and assume that a statistic g with the property
E(g) = µ is available. Typically samples from g are obtained
from computations, but in the case of antenna measurements,
it is obtained from the reverberation chamber measurements.
Suppose further that there is another statistic g̃ with E(g̃) = ν.
Then, a new unbiased statistic

g∗ = g + c(g̃ − ν)

can be constructed with E(g∗) = µ. The constant c can be
any number, but choosing

c = −Cov(g, g̃)

Var(g̃)

minimizes the variance of g∗ and hence according to equa-
tion (6) will improve the convergence of the estimate.

In the language of reverberation chamber and antenna
measurement this correspond to finding a measurement set-up
where there is correlation between two antenna measurements.
This is often not that easy, but there are interesting cases where
it is. One such scenario is when an antenna is being developed
in several steps, the first measurement of the efficiency can be
imagined to have a high correlation to the second measurement
where the antenna prototype will have only minor modifica-
tions. This will be particularity true if only the efficiency and
not the actual pattern of the antenna is modified.

To demonstrate this, total radiated power was measured on a
commercial phone using the Bluetest RTS60 RC. The antenna
on the phone was artificially modified to simulate development
steps of the antenna. The result can be seen in figure 3. For
some cases the method does not improve convergence at all,
but for some cases convergence is significantly improved. For

Fig. 3. Result from TRP measurements from 7 different artificial antenna
modifications and using the control variate method for improved convergence.

a repeated measurement (green line) the convergence is fast
enough to yield the final result after only a few samples.

IV. CONCLUSION

In this paper it was shown that RC antenna and device
measurements can be related to Monte Carlo integration.
Using the similarities, it was further shown that techniques
developed for Monte Carlo integration can be used to improve
convergence speed in RC measurements.

There is a large set of applications when these methods can
be used to improve convergence speed. However, it should
also be noted that these methods can not be used to improve
minimum measurement uncertainty.
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