
Communication Aware Compiler for Mesh-Structured Reconfigurable Processors
on Single/Multi Chip

Yi Lu1, Qinhao Wang1, Amir Masoud Gharehbaghi1 and Masahiro Fujita2
1Department of Electronic Engineering, The University of Tokyo
2VLSI Design and Education Center, The University of Tokyo

2-11-16, Yayoi, Bunkyo-ku, Tokyo, Japan, 113-0032
E-mail : 1{yilu,wang,amir}@cad.t.u-tokyo.ac.jp, 2fujita@ee.t.u-tokyo.ac.jp

Abstract: Many-core system performance is still underuti-
lized in many cases. The program optimization on highly
parallel systems is hard and usually done manually. The inter-
core data transfer delay highly affects the system performance
in deep sub-micron age. To overcome these problems, in
this paper, we propose an integer linear programming (ILP)
based method to analyze and optimize a program running on
a mesh-structured processors array. The proposed model in-
cludes communication-aware operation binding and mapping
as well as data transfer routing. With this flexible ILP based
formulation, optimized binding, mapping and routing is de-
termined for a given program on the target architecture. Our
ILP based formulation can also be used for high level ECO
while performing high level synthesis or targeting multiple
chips architecture with two-step ILP.

Keywords— High-Level Synthesis, Reconfigurable Architectures
,Multi/Many-Core Systems, Integer Linear Programming, Engineering
Change Order

1. Introduction
Reconfigurable many-core systems have been introduced to
overcome the power consumption and single-core frequency
limit problem. However, programming on such kind of highly
parallel system is considered a hard task even expert pro-
grammer need carefully schedule their program. In addi-
tion, with sub-micron technologies development, the com-
munication delay of inter-core data transfer has become the
dominate latency factor in many-core system. If compilers
could provide a good mapping and binding of each opera-

Figure 1. Compiler architecture

Figure 2. A 2x2 mesh-structured processors array

tion as well as scheduling of data transfer, the many-core
system could achieve higher performance and become more
program-friendly. The binding and mapping of operation with
communication delay is not new, there are many research on
hardware synthesis. Such as distributed register (DR) archi-
tecture in high level synthesis[1] [2]. However, those kind of
architectures cannot be directly used in many-core systems,
as the wire and register for communication may be changed
during the synthesis flow in DR model. Many-core systems
have fixed layout and number of register for communication.
On the other hand, we could not use general processor task
scheduling methods[3]. As in general processor task schedul-
ing method, the model usually ignores the interconnection de-
lay between processors and the whole processor array usually
share same memory space, which could not satisfy our as-
sumption on mesh-structured reconfigurable processor archi-
tecture. As a result, in this paper, we extend the DR model to
add more constraint on wire and register use. We have pro-
posed an ILP based formulation to solve the aforementioned
problems. Moreover, our proposed model can be used for
Engineering Change Order (ECO) or targeting multi-chip ar-
chitectures.

2. Problem Description
Without loss of generality, in this paper we use C program as
the input program. We use Clang[4] to parse the input C pro-
gram into LLVM intermediate representation code. Then, we

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

605

extract the data flow graph (DFG) of the original C program
from the LLVM intermediate representation code. Finally,
we perform mapping, binding, and data transfer routing of the
DFG to the target hardware. The overall compiler architecture
is shown in Figure 1. Note that the DFG in our method, may
be generated from other programming languages or models.

2.1 Target architecture

Our target architecture is a mesh-structured reconfigurable
processors array, this architecture shares the wire resources as
well as register resources. As shown in Figure2, the proces-
sors are interconnected by the register interface(RI), to sim-
plify our approach, we restrict that each RI could hold only
one unit of data for data transfer. As the wire is shared by
two neighbor processors, which indicates that two neighbor
processors cannot exchange data simultaneously. In above
architecture, we name the transfer channel at each processor
as {N,W,E, S, L}, N(orth), W(est), E(ast), S(outh) repre-
sent the four directions for data transfer from one proces-
sor to its neighbors. L(ocal) means that the data will be lo-
cated at the processor and can be used for computing and/or
transfer in the next cycle. Here we label each processor
i as pi and the communication channel with chi,dir where
dir ∈ {N,W,S,E, L}.

2.2 Data flow graph

In this paper, our data flow graph (DFG) used for analysis is
generated from C source code. A DFG is a directed graph
defined by G(V,E, δ), where V = {vi|i = 1, 2, , nops} is
the set of nodes of the graph. Each node vi ∈ V corre-
sponds to one operation in the program. E = {(vi, vj)i, j =
1, 2, , nops} is the set of edges, which represents a data trans-
fer dependency of operations. The δi is the latency time for
each vi ∈ V . In this paper, to simplify the model and com-
puting, we assume all the operation latency is one time unit.
As an example, Figure3 shows a DFG with 6 operations.

3. Problem Formulation
In this section, we formally present the model of the channel
and functional unit binding as well as data transfer problem
using integer linear programming (ILP).

3.1 ILP variables

Given a DFG G(V,E, δ) and a target architecture, we use bi-
nary variables Xop,t,p to define the operation binding. Here

Figure 3. A data flow graph example with 6 operations

Figure 4. Executing procedure of DFG in Figure3 on a 2x2
architecture

op indicated the operations in DFG, t is the global clock cy-
cle and p is the binded processor and Xop,t,p indicates if an
operation is binded to a specific time point on a specific pro-
cessor. To handle the data transfer between the operations, we
introduced another binary variables Di,t,ch, where i label the
data dependency in DFG, t is clock cycle and ch is a channel
which is used for transfer data.

3.2 ILP constrains and object function

As we introduced the binary variables to represent the oper-
ation binding as well as data transfer, we need appropriate
constraints as well as the optimization object to get the result
with this model via ILP solver. Basically, we have the re-
source constraints that every operation should be only bound
to one processor at one specific time point:∑

t

∑
p

Xop,t,p = 1

For each time, at most one operation can be executed on one
processor:

∀t, p,
∑
op

Xop,t,p ≤ 1

Figure 5. Binding result on DFG in Figure3 on a 2x2 archi-
tecture

606

Figure 6. A simple ECO result with add one extra node in
DFG on Figure3

For data transfer, only one data transfer could be done in one
channel at one time:

∀t, ch,
∑
i

Di,t,ch ≤ 1

To correctly handle the wire resource limitation in our data
transfer procedure, we also introduce the wire resource con-
straint in our model. As Figure 5 shows, CH1E and CH2W

shared the same wire and the data transfer between processor
1 and 2 cannot be done simultaneously in one cycle, so we
iterate all the possible data transfer channels which share the
wire resource:

∀t, ch ∈ {same wire},
∑
i

Di,t,ch ≤ 1

Also as the operation is related to our data transfer,
for each Xop,t,p = 1 there exists a data requirement
req(Di,t−1,chtar−p), indicating that in previous cycle, the re-
quired data i should be located in the channel targeted the
processor p, and also for the next cycle, it will generate new
data inext for transfer as gen(Dinext,t+1,chp

):

−Xop,t,p +
∑

ch∈req(Di,t−1,chtar−p
)

Di,t−1,ch ≥ 0

−Xop,t,p +
∑

ch∈gen(Dinext,t+1,chp)

Dinext,t+1,ch ≥ 0

In addition, for each time step, the data transfer has its con-
tinuity, as a continuity constraint where chtar is all possible
channel for the target processor, similar to the above one:

−Di,t,ch +
∑

ch∈chtar

Di,t+1,ch +Xopi,t+1,p = 0

To reduce the solution space, we also consider prece-
dence constraints between the operations, which mean that
a scheduling range can be computed for each operation. This
range is an interval between the earliest start time and the lat-
est start time at which the operation can be executed. The
earliest start time and the latest start time can be computed
by using as soon as possible (ASAP) and as late as possible
(ALAP) algorithms respectively.
With these constraints, to get the optimized result, we will

evaluate all possible end node in DFG, and find the largest
one as the execute time, the object function is:

Minimal :Max(t×Xop,t,p)

To correctly handle this object function, we introduce an aux-
iliary variable call MAX, and we should have:

∀t, p,
∑
t

∑
p

t×Xop,t,p ≤MAX

3.3 ILP based ECO

With this model, we could easily constraint the architecture as
well as DFG by change the binary variables. We could keep
part of the previous computed operation binding information
in variable Xop,t,p then start the ILP solver again to perform
ECO. As an example in Figure6, we keep all the results on
function binding except for node 4 as constraints for our ILP
solver, and we run the ILP solver again to get the result, here
in this example we keep all the Xop,t,p except for node 4 and
new node value, re-generate the constraints and use ILP solver
to solve them again. If the model is not feasible, we could re-
lease some more operation binding after the node and try to
re-solve the model. With computed information, the whole
formula could be solve faster than without pre-computed in-
formation.

3.4 ILP based DFG scheduling on multiple chips

We also try to apply this model in circuit partition problem
on multi-chips. To correctly handle the multiple chips map-
ping, we try two approaches for the DFG scheduling problem
on multi-chips. First approach is to re-constraint the whole
model, we introduce different delay values at the wire on
inter-chips and intra-chip in our model, however the compu-
tation complexity is large.
The other approach is to first slice the original DFG into mul-
tiple sub DFG. Figure 8 shows an example that we sliced the
DFG into two parts program 1 and program 2 and each part
shown in a different color. Then we compute their execute la-
tency with our model. Here we could see program 1 and 2 as a
new DFG with 2 nodes. As the target chips is also constructed
in a mesh way, we could apply our model on this new DFG
with inter-chip delay to schedule on the upper level mesh-
structured chips array. Here we call this approach a two-step
ILP method.

4. Experiments

4.1 Experiments setup

We have implemented the proposed with C++/Linux environ-
ment and all the experiments are conducted on a workstation
with an Intel Core-i7 2.9GHz CPU and 4GB RAM. Our target
architecture is a 2x2 mesh-structured reconfigurable proces-
sor array. We use Gurobi[5] as our ILP solver.

4.2 Experiment Results

Table 1 shows the results of mapping some DFGs on a 2x2
architecture, Figure 4,5 shows a detail example with how the

607

Figure 7. A sliced DFG from Figure3

whole DFG executed on the target architecture. We could see
that this model correctly handle both the operation binding as
well as data transfer in target architecture. However, as the
complexity increases, we could see that the solver run time
increases significantly. Note that this model is very flexible,
efficient as ILP gives an optimized result for our future re-
search.
To evaluate ECO, we add some more operations into our data
flow graph, and we keep part of the computed binding result
on our architecture, then we reuse our model to get the incre-
mental result as Table 2 shows. These results indicate that if
we could first determine some of the binding of operations,
the result searching space will significantly reduced and ILP
solver could finish the search quickly.
For multi-chips mapping and scheduling, we introduced a two
chips architecture, each chip consists a 2x2 mesh-structured
reconfigurable processor array. Here we assume our inter-
chip communication latency is 5 clock cycles.
In our experiments, we split the original DFG into two parts
manually and apply our method for these two parts on each
chip. Table 3 shows some example of multi-chips mapping

Table 1. DFG mapping results
DFG Node DFG Edge Latency Time(s)

s1 5 4 7 0.85
s2 6 5 7 1.1

filter 16 15 12 170
iir 23 26 16 422
fft 25 24 8 15

Table 2. ECO changing results
ECO ECO Latency Latency Time(s)
Node Edge Before ECO

s2 1 1 7 7 0.142
filter 3 2 12 13 0.73
iir 6 4 16 18 1.21

Table 3. DFG mapping on 2 Chips with partition
Latency 1 Latency 2 Total Latency Time(s)

s2 4 3 10 2
filter 11 13 15 14
iir 12 13 18 33

Figure 8. Mapping result of DFG in Figure 7 on two 2x2
mesh-structured reconfigurable processor chips

result. Latency 1 and 2 indicate the individual executing time
for the sliced parts of DFG with out considering inter-chip
data transfer. However, as there exists data transfer among
chips, The final latency will be affected by both individual
mapping results as well as the inter-chip data transfer delay.
Figure 8 shows the mapping results of DFG in Figure 7. We
could see although the individual latency is 3 and 4 clock cy-
cle. After integrate, the total latency becomes 10 clock cycle
as the data from operation 2 to operation 5 needs 5 clock cy-
cles to transfer.

5. Conclution and Future works
In this paper, we proposed an ILP based method to analyze
and optimize a program running on a mesh-structured proces-
sors array. This model handles communication-aware opera-
tion binding and mapping as well as data transfer routing cor-
rectly, we also analyzed how we enhance this model to deal
with ECO as well as multiple chips binding problem. These
experiment give us some optimized result on the program op-
erations scheduling problem for our future research use.
In the next stage we will expand current model to handle pro-
gram with pipeline scheduling. As generally this kind of ar-
chitecture will be used for computing looped programs and
we’d like to optimize the throughput for these kind of pro-
gram. We also interested in finding some heuristic method to
solve this problem without losing too much performance in
latency.

References

[1] Shanghua G., et al. ”Interconnect-Aware Pipeline Syn-
thesis for Array-Based Architectures.” IEICE TRANSAC-
TIONS on Fundamentals of Electronics Communications
and Computer Sciences 92.6 2009.

[2] Huang, Wei-Sheng, et al. ”A multicycle communication
architecture and synthesis flow for global interconnect re-
source sharing.” Design Automation Conference, 2008.
ASPDAC 2008. Asia and South Pacific. IEEE, 2008.

[3] Hoang, Phu, and Jan Rabaey. ”Hierarchical schedul-
ing of DSP programs onto multiprocessors for maximum
throughput.” Application Specific Array Processors, 1992.
Proceedings of the International Conference on. IEEE,
1992.

[4] http://clang.llvm.org/
[5] http://www.gurobi.com/

608

