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Abstract— Routing is one of the most challenging issues 
related to mobile ad hoc networks. Researchers’ attention is 
increasingly being attracted toward bio-inspired routing 
protocols, a representative of which is AntHocNet. This protocol 
incorporates congestion avoidance into its path construction 
mechanism and attempts to construct and maintain multiple 
paths. The source node and each intermediate node along the 
path forward data to the next hop stochastically such that the 
probability of a better path being chosen is high. However, the 
combination of multiple paths and the broadcasting of route-
construction (or route repair) packets sometimes results in the 
formation of loops, which seriously degrades the performance of 
the protocol. In this paper, we identify some loop formation 
scenarios and propose solutions thereto. We also present some 
simulation results that compare the performance of the original 
AntHocNet with one in which the proposed solutions are 
incorporated. 
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I.  INTRODUCTION (HEADING 1) 

Mobile ad hoc networks (MANETs) have attracted 
increasing research attention over the last few decades. A 
MANET is a network of mobile nodes communicating over a 
wireless medium. Because of the network’s ad hoc nature, 
there is no infrastructure and, therefore, the mobile nodes 
themselves have to perform the routing function. Ad hoc 
networks are self-organizing and adaptive. On the one hand, 
the infrastructure-less nature of MANETs brings with it many 
advantages, such as allowing rapid deployment, but on the 
other, the dynamic nature of the topology of MANETs renders 
routing a challenging issue. Mobile nodes that are within 
transmission range of each other can communicate directly. 
However, for communication among nodes that are not in the 
transmission range of each other, intermediate nodes have to 
forward the packets toward the destination. A large number of 
routing protocols for MANETs have been proposed [1]. 
Researchers have also looked to nature for finding solutions to 
the problem of routing [2, 3] and a number of bio-inspired 
routing protocols have been proposed. AntHocNet [4, 5] is a 
representative bio-inspired protocol designed for MANETs. In 
this paper, we identify some loop formation scenarios in 
AntHocNet and propose solutions thereto. In the end we show 
some simulation results, which show that the performance of 

AntHocNet is considerably improved when the loop formation 
is prevented. 

II. OVERVIEW OF ANTHOCNET 

AntHocNet is a routing protocol inspired by the foraging 
behavior of ants. AntHocNet has both reactive and proactive 
features. 

A. Reactive path setup 

The source node broadcasts a reactive forward ant (FANT). 
Every intermediate node that receives a reactive FANT 
broadcasts the ant further if it has no path to the given 
destination; otherwise, it unicasts the ant by choosing the next 
hop stochastically according to 
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where Τ 		is the amount of pheromone on the link from i to 
n for destination d, while Ν  is the set of neighbors of i over 
which a path to the destination d is known. The reactive FANT 
maintains a list of its visited nodes. When the ant reaches the 
destination, it is converted to a backward ant (BANT). The 
BANT takes the same path as its corresponding FANT, but in 
the reverse direction. The BANT sets up a path to the 
destination at every intermediate node by creating or updating 
an entry Τ 		 in the routing table. This entry indicates the 
goodness of traveling over next hop n toward destination d 
from the current node i, and is computed using 
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Where Τ 	is the estimate of the time it would take a data 

packet to reach from the current node i to the destination d. 

B. Stochastic data routing 

Multiple paths are constructed from the source to the 
destination during the path setup phase and data are forwarded 
along these paths according to their goodness indicated by the 
pheromone values in the routing table. At each node, the next 
hop is chosen stochastically using 
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reaches the destination D. Now, if the corresponding BANT 
successfully arrives back at source S, a loop is formed between 
m3 and n4.  

2) Multi-hop loop 

Consider the slightly different paths shown below for multi-
hop loop formation. 

P1: n1, n2, n3, n4, n5, n6, n7 …..nk, D 

P2: m1, m2, m3, u, n4, n5, n6, n7 …..nk, D 

P3: m1, m2, m3, m4, m5, m6, m7 …..mp, D 

Again, suppose that while data packets are in transit along 
P1, the link between n4 and n5 breaks. Node n4 attempts to 
locally repair the path and therefore it broadcasts a route repair 
FANT. Suppose that a node v receives this broadcast and 
rebroadcasts it further. This rebroadcast is received by m3. Now, 
from here on the FANT can travel along the rest of P3 all the 
way to the destination. In this case the loop formed spans the 
nodes m3, u, n4, v. 

Such loops are formed in the case of proactive ants if, for 
example, a proactive FANT, having travelled along P1, is 
broadcast at n4 and travels to the destination just like the route 
repair ant. 

Solution: 
Single-hop loops thus formed can be prevented. Before 

forwarding a route-repair (or proactive) FANT, each node 
checks whether it (the node) has a path to the involved 
destination passing through the node from which the ant 
arrived; if yes, then the node drops the ant. 

C. Loop formation (by route-repair forward ant): when a 
broadcasted forward ant is received by an upstream node, 
including the source node, that has multiple paths to the 
involved destination. 

1) Single-hop loop 

A single-hop loop may form when the upstream node, with 
multiple paths to the destination, is a neighbor of the node of 
which the downstream link to the destination breaks. 

Suppose we have the following paths from a source S to a 
destination D.  

P1: n1, n2, n3, n4, n5, n6, n7 …..nk, D 

P2: m1, m2, m3, m4, m5, m6, m7 …..mp, D 

P3: m1, m2, r3, r4, r5, r6, r7 …..ri, D 

Notice that there are two paths from node m2 to destination 
D (P2 and P3 span the same nodes up to m2 and then they 
branch). Now, suppose that some link, downstream from m2, 
along P2 breaks; say, the link between m3 and m4 breaks during 
an ongoing data session. Node m3 broadcasts a route repair 
FANT. Since m2 is a neighbor of m3, it also receives the 
broadcast and forwards it to r3. Now, the FANT can travel 
along the rest of P3 all the way to the destination D. When the 
corresponding BANT reaches m3, a loop is formed between m2 
and m3. 

2) Multi hop loop 

Such loops could also have formed, although with much 
smaller probability, even if m2 and m3 had not been neighbors. 
A loop would also have formed if the source S had received 
this ant and forwarded it along the path P1. When a link breaks 
near the source node and the source node has multiple paths to 
the involved destination, the probability of such loops forming 
is high. 

Solution: 
Single-hop loops and loops that involve the source node of 

data packets can be eliminated. To eliminate single-hop loops, 
a node that receives a broadcast FANT first checks whether it 
has a path to the involved destination passing through the node 
that broadcast the ant (the source node of the ant). If such a 
path exists, the node drops the ant. 

All such loops, single- or multi-hop, that involve the source 
of data packets can also be eliminated by including its address 
in the route repair FANT. However, loops that do not involve 
the source node of data packets and span multiple hops cannot 
be prevented, although, as mentioned earlier, the probability of 
such loops forming is very small. 

IV. PERFORMANCE EVALUATION 

AntHocNet was implemented with and without the 
incorporation of the proposed loop prevention solutions. Here, 
we call AntHocNet with loop prevention LP-AntHocNet. In 
this section we compare the performance of the two protocols. 

A. Simulation Environment 

Simulations were carried out using ns-2. A total of 50 
nodes were deployed in an area of 1500x300 m2. For each 
scenario, five simulations were run and then the results were 
averaged. Each simulation was run for 600 s. The traffic type 
was CBR. At the MAC layer, IEEE 802.11 DCF was used. The 
propagation model used was two-ray ground. Transmission 
range was maintained at 250 m. 

B. Simulatin Results 

Figure 3 shows a comparison of the delivery ratio of 
AntHocNet and LP-AntHocNet. As the pause time increases, 
the delivery ratio for both AntHocNet and LP-AntHocNet 
increases. However, LP-AntHocNet performs much better than 
AntHocNet for all pause times. The average delivery ratio for 
LP-AntHocNet is greater than 90% for all sample intervals, 
whereas that of the pure AntHocNet slightly rises above 80% 
for higher pause times. 

Figure 4 shows a comparison of the average end-to-end 
delay. As the pause time increases, the end-to-end delay for 
both protocols drops. For smaller pause times, LP-AntHocNet 
performs considerably better than AntHocNet.  

In Figure 5, the normalized overhead is compared and again 
LP-AntHocNet outperforms AntHocNet for all pause times. 
For smaller pause times, the performance of LP-AntHocNet is 
again considerably better than that of AntHocNet. 

Figure 6 shows the frequency of occurrence of the three 
types of loops for different pause times. Type-A loops are 
caused by reactive and route-repair ants and the figure shows 
that the frequency of such loops is almost negligible. Type-B 
loops are mainly caused by proactive ants (and occasionally by 
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route repair ants). The figure shows that variation in pause time 
has little impact on the frequency of these loops. This behavior 
can be explained by the fact that such loops are caused mainly 
by proactive ants which are launched by data sources at regular 
interval irrespective of the pause time. Type-C loops are caused 
by route repair ants. The higher the pause time, the smaller the 
number of route breakages and therefore the smaller the 
number of route repair ants launched, and vice versa.  
Therefore, as the pause time increases, the frequency of type-C 
loops decreases. Overall, the total frequency decreases as the 
pause time increases. It is worth mentioning here that 
performance degradation depends not only on the frequency of 
loop formation but also on the duration for which a loop 
remains intact, and on the goodness of the path along which the 
loop occurs.  

 
Fig. 3. Comparison of the packet delivery ratio. 

 
Fig. 4. Comparison of the average end-to-end delay. 

 
Fig. 5. Comparison of the overhead. 

 
Fig. 6. Loop formation frequency. 

V. CONCLUSIONS 

In this paper, the looping issues that occur in AntHocNet 
were identified and solutions for preventing the formation of 
such loops were proposed. Simulation results indicated that 
looping is a serious problem in AntHocNet and degrades the 
performance significantly. The results showed that the 
performance can be greatly improved when the loop prevention 
is implemented. 
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