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Abstract: For general object recognition, detection and track-
ing are important and complementary components but require
different types of features: detection requires to extract com-
mon features of a target category, and tracking requires to
extract unique features of each target object. Therefore, it
is difficult to efficiently fuse two core components into one.
To address the issue, in the paper, we present a novel track-
ing method using byproducts of a detection process using a
boosting classifier composed of binary decision trees, which
are the path similarities between binary decision trees. In the
experimental result, the proposed method achieved compa-
rable tracking capability to a conventional tracking method
using online boosting without any extra computation.
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1. Introduction
In visual object recognition, object detection locates target
objects in images, and object tracking estimates a trajec-
tory of each object in consecutive frames. In both research
fields, the precision of detection and tracking is significantly
improved for the last five years by the advent of sophisti-
cated approaches [1], [2]. For object detection, it is a well-
known knowledge that boosting classifiers using binary deci-
sion trees as weak learners can achieve leading-edge detection
performance for various target objects, which is also known
as boosted decision trees (BDT), such as aggregated chan-
nel features (ACF) [3]. Also, for object tracking, there exist
tracking methods using online learning algorithms such as on-
line boosting [4], which is a variant of AdaBoost [5] and can
adaptively handle color and shape changes.

For further improvement, recent visual object recog-
nition systems complementarily combine object detection
and tracking such as tracking-by-detection and detection-by-
tracking [6], [7]. However, in general, object detection and
tracking require different types of features: object detection
uses common features for a target category and object track-
ing uses unique features for each target. Therefore, it is diffi-
cult for conventional systems to process object detection and
tracking efficiently. In order to solve this issue, we propose
a novel feature extraction method using BDT shared by ob-
ject detection and tracking. The proposed method provides
information for object detection and tracking from an iden-
tical BDT and contributes to the reduction of computational
cost: node information for detection and edge information for
tracking.

The rest of this paper is organized as follows. Section 2
explains a tracking-by-detection framework used for evalua-
tion. Section 3 describes the proposed feature descriptor us-
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Figure 1. Tracking-by-detection framework

ing BDT, and Section 4 evaluates the proposed method on
a multiple object tracking platform. Finally, Section 5 con-
cludes this paper.

2. Tracking-by-detection framework
To achieve an efficient combination of detection and tracking
processes, tracking-by-detection mainly focuses on improv-
ing tracking results based on detection results, and detection-
by-tracking is vice versa. The proposed method can be used
in either case, and one of tracking-by-detection frameworks
is adopted for evaluation in this paper: an online multi-person
tracking-by-detection [7]. This framework is based on a par-
ticle filter to estimate the distribution of each target state from
multiple observations and assumptions, and the proposed fea-
ture descriptor is also evaluated on the identical particle filter
framework.

The particle filter consists of two main components as
usual: dynamic and observation models, which define drift
and weight of each particle respectively. Figure 1 summa-
rizes the particle filter and the required data used in [7]: the
upper half shows the particle filter and the lower half shows
the required data for it. As shown in Fig. 1, the observation
model is defined by detection, confidence, and tracker terms.
If there exists a positive match between a detection result and
a tracker, the detection term evaluates the distance between
the particle and the associated detection, and primarily guides
the tracking process based on the evaluation result. Other-
wise, in the case of detection misses or occlusions, the confi-
dence and the tracker terms evaluate the detector confidence
and the tracker score at the particle position, and guide the
tracking process.

This type of frameworks can be used for any detectors
and trackers, but the problem is computational cost caused
by processing detection and tracking separately. Especially,
for trackers, online learning algorithms are commonly used
for adapting a target’s color and shape changes, which takes
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Figure 2. Proposed feature extraction sharing for object de-
tection and tracking

a relatively large amount of computational cost, and for the
same reason, in [7], Breitenstein et al. used the online boost-
ing [4] for their tracker. The proposed feature descriptor pre-
sented in the following section focuses on this computational
cost issue and effectively works for both detector and tracker.

3. Tracking using path similarity
This section presents how to define the similarity between ob-
jects by utilizing the identical BDT used in detection. As
shown in Fig. 2, the BDT consists of N decision trees, and
each tree consists of nodes and edges. In detection, only the
node information is used to solve whether an object can be
classified into the target category or not. Each node except
leaves decides the next node based on the comparison be-
tween a feature value and a threshold, the decision tree out-
puts an evaluation value when the process reaches a leaf node,
and the classification result is decided based on the sum of all
outputs. In contrast to the detection process, the proposed
tracking method utilizes the edge information, which is based
on the prediction that since corresponding features extracted
from an identical object between consecutive frames are sim-
ilar, the paths of corresponding trees will be as well.

The path of a d-depth binary tree can be represented by d-
bit binary representation: given 0 for a left edge and 1 for a
right edge, the bold solid and the bold dotted paths in Fig. 2
are represented as (000)2 and (011)2, respectively. In the
binary representation, the most significant bit represents the
edge from the root node and the least significant bit represents
the edge to a leaf node. This bit order is according to impor-
tance in path similarity. Then, the path similarity is defined as
the ratio of common edges between two paths to depth d, and
can be calculated by the following equation:

s(p, q) = 1− ⌊log2(2(p⊕ q) + 1)⌋
d

, (1)

where p and q are the binary representations of two paths for
comparison, and ⊕ is a bitwise exclusive OR operation. By
substituting (000)2 and (011)2 to the equation, the path sim-
ilarity between the bold dotted path and the bold solid path
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Figure 3. Discrimination capability of the path similarity

Table 1. LUT from (p⊕ q) to s(p, q)
(p⊕ q) 000 001 01X 1XX
s(p, q) 1 2/3 1/3 0

X: don’t care

can be easily obtained, and is 1/3. The path similarity of the
entire BDT is simply defined as the mean of each path simi-
larity:

S(P,Q) =
1

N

N∑
n=1

s(pn, qn), (2)

where N is the number of decision trees, and P and Q are two
sets of N paths, which are {p1, . . . , pN} and {q1, . . . , qN}.

The proposed path similarity is simple but enables to
achieve comparable discrimination capability with the con-
ventional online boosting method [7]. As a preliminary sim-
ulation, its discrimination capability has been examined on
TUD-Crossing pedestrian dataset [6]. In the preliminary ex-
periment, a BDT is trained by ACF [3] and AdaBoost [5] us-
ing INRIA person dataset [8], which consists of 2048 depth-
two decision trees, and soft cascade [9] pruning of boosting
is disabled to evaluate the genuine discrimination capability.
Figure 3 shows the distribution of each path similarity differ-
ence between objects from consecutive frames, where posi-
tive score differences represent that the target object can be
discriminated from others and negative ones for vice versa.
From the result, the ratio of the number of positives to the
total number is up to 99.4%. Taking into consideration that
the final tracking prediction is based on multiple cues such as
objects’ location and size, it is sufficient to use the proposed
feature descriptor for practical tracking applications.

Although a logarithm function and a division by constant
are used in Eq. (1) for convenience of mathematical expres-
sion, the path similarity can be easily implemented in both
software and hardware platforms. Table 1 shows a lookup ta-
ble (LUT) from (p⊕ q) to s(p, q) with 3-bit width. As shown
in Table 1, the path similarity s(p, q) depends on only the
leading 1 in the binary representation of (p ⊕ q), where X is
“don’t care”, which means that s(p, q) does not depend on it.
Obviously, if a small LUT is allocated for the path similarity,
it is not necessary to use troublesome functions such as the
logarithm. Also, in hardware platform, finding leading 1 is
much easier with a dedicated circuit even without LUTs.
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Figure 4. Tracking results and ground truth on PETS’09 S2L1

Figure 5. Tracking results and ground truth on PETS’09 S2L2

Table 2. PETS’09 dataset [10]
Sequence Resolution Frames Tracks Density Camera Ground truth

S2L1 768x576 795 19 5.8 static [11]
S2L2 768x576 436 43 23.6 static [12]

Table 3. MOTA and MOTP comparison
Dataset Method MOTA↑ MOTP↑

PETS’09 Breitenstein et al. [7] 0.797 0.563
S2L1 proposed 0.712 0.702

PETS’09 Breitenstein et al. [7] 0.500 0.513
S2L2 proposed 0.417 0.650

4. Evaluation

This section examines the tracking performance of the pro-
posed method on multiple object tracking (MOT) frame-
work [7], and the same BDT described in the preliminary ex-
periment is used for it. The evaluation is conducted on two
sequences S2L1 and S2L2 of PETS’09 dataset [10] and the
details are shown in Table 2. The ground truth annotation of
each dataset is available: [11] for S2L1 and [12] for S2L2.

Figures 4 and 5 show pairs of a tracking result and a ground
truth trajectories of PETS’09 S2L1 and S2L2, where each
rectangle represents a target’s position and each line repre-
sents a trajectory. From the result, it is confirmed that the pro-
posed method correctly estimates most trajectories, but fails
to track some targets, which are pointed by arrows in Fig. 4
and 5. The tracking performance on the entire datasets is
shown in Table 3. For quantitative analysis, two major MOT
metrics, MOTA and MOTP, are selected from CLEAR MOT
metrics [13]: MOTA indicates errors of false positives, false
negatives, and ID switches, and MOTP indicates the average
overlap between annotated and predicted bounding boxes. In
both MOTA and MOTP, a higher value indicates a better re-

sult. In Table 3, the proposed method shows higher MOTP but
lower MOTA than the conventional method. This result repre-
sents that the proposed method can precisely localize objects
in each frame but assigns different IDs for an identical object
while the tracking process.

For more detailed analysis, we classify the tracking results
into four patterns in Fig. 6: combinations of success/failure
in detection and tracking. As shown in Fig. 6, each tracking
process is properly guided by a correct detection result as (a)
or by detector confidences and tracker scores as (b). In both
cases, it is easily confirmed that the particles of each tracker
are concentrated on surround of its target. However, as shown
in (c) and (d), in the case that the target is occluded by other
objects, it is difficult to correctly track it because both detec-
tor confidences and tracker scores are unreliable due to fore-
ground objects, even if the target is correctly detected. This is
the main cause of degrading the proposed method’s MOTA in
Table 3.

In the current state, it is difficult to directly compare the
tracking performance between the proposed method and the
conventional method, but considering both MOTP and MOTA
it is possible to say that the proposed method achieved com-
parable tracking results to the conventional method [7].

5. Conclusion
This paper proposed an object tracking feature descriptor
based on BDT’s path similarity. The underlying idea is that
similar features generate similar BDT’s paths. The proposed
feature descriptor was examined in terms of discrimination
capability and tracking performance through the preliminary
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experiment and the MOT benchmark. In both evaluation,
even though a boosting classifier with shallow, depth two,
decision trees was used, the preliminary experiment showed
that the proposed method has comparable discrimination ca-
pability to the conventional method, and the MOT benchmark
showed that the proposed method is applicable to practical ap-
plications.

Since the decision trees can be deepened in training phase
and deeper trees can provide more resolution of path similar-
ity, the tracking performance of the proposed method can be
easily improved by retraining the boosting classifier. More-
over, considering the fact that the boosting classifier used in
this paper is trained as a dedicated detector, there also exists
the possibility of improving tracking performance by manip-
ulating the structure of decision trees: even if a decision tree
is altered for tracking in training phase, boosting algorithm
can recover classification performance by adaptively training
its subsequent decision trees.

The proposed method is a promising feature descriptor es-
pecially for embedded systems because it has a computational
cost advantage by sharing BDT for detection and tracking and
can be easily implemented. For a future work, we are plan-
ning to improve the proposed method’s performance based
on the ideas mentioned above and implement it in a hardware
platform.
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