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Abstract–We have demonstrated that an unsta-
ble time-delayed controller can provide a tool to con-
trol the stability of Hopf bifurcation. The unstable
time-delayed controller has used to stabilize an unsta-
ble periodic orbit operating in subcritical mode. By
developing a new coupling method the unstable time-
delayed system was improved to be applied for con-
version of stability in Hopf bifurcation system. In this
study, as an example, conversion of stability of Van der
Pol oscillator has been confirmed both experimentally
and numerically. The control method would control
various oscillations of systems arising from Hopf bifur-
cation.

1. Introduction

Time-delayed systems in nonlinear system takes
place much complicated phenomena because of their
infinite degree of freedom. Many engineers and physi-
cists have tackled to elucidate physically fundamental
properties and to develop applications using its vari-
ous phenomena. The most brilliant innovation was the
time-delayed feedback control method [1] developed in
the early nineties. The method makes a chaotic attrac-
tor converge to an unstable periodic orbit only by im-
posing a time-delayed signal to a chaotic system to be
controlled. The great advantage points are its robust-
ness and ease of handle. However, the method also
has an intrinsic limitation that it cannot be applied
for torsion free systems [2]. To overcome such limi-
tation the unstable time-delayed control method was
developed [3]. By intuitive understanding, a redun-
dant torsion is introduced artificially by attaching an
unstable controller. The trial was succeeded in con-
trol of torsion free systems but the controllability is
not enough for applications because of its narrow op-
erating margin. From the engineering viewpoint we
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have developed to expand operating margin so as to
stand for practical applications. We choose sigmoidal
function, sgn(x), as feedback function instead of linear
function, x. The modified unstable time-delayed feed-
back method derived extremely wide operating mar-
gin and then accompanied conversion of the stability
as something like a side effect. In this manuscript we
will describe experimental and numerical estimations
of the conversion as a phenomenology.

2. Van der Pol oscillator with unstable time-
delayed controller

We consider a delay-coupled Van der Pol oscillator
with coupling constnt K,

ẍ± ¡²0 − x2
¢
ẋ+ ω2

0x = Ku̇, (1)

ü− ¡²c − u2
¢
u̇+ ω2

cx = −K (ẋ− ẋτ ) , (2)

where ẋτ = ẋ(t − τ ) and the upper and lower sign in
eq. (1) denote the sub- and supercritical Hopf bifur-
cation, respectively. Near the supercritical bifurcation
point, the system changes from the fixed point to the
stable periodic orbit as the bifurcation parameter ²0
changes from negative to positive. In the case of the
subcritical Hopf bifurcation, the unstable fixed point
changes to the stable fixed point with the bifurcation
parameter. In polar coordinate, if variables are trans-
formed as x = r cosφ, ẋ = −ω0r sinφ, u = w cosψ and
u̇ = −ωcw sinψ, eqs. (1) and (2) can be written by

ṙ = ±
µ
²0
2
− r

2

8

¶
r +

Kωc
2ω0

w cos(φ− ψ)

φ̇ = ω0 − Kωc
2ω0

· w
r
sin(φ− ψ)

ẇ =

µ
²c
2
− r

2

8

¶
w − Kω0

2ωc
r cos(φ− ψ)

+
Kω0

2ωc
rτ cos(φτ − ψ)

ψ̇ = ωc +
Kω0

2ωc
· r
w
sin(φ− ψ)
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+
Kω0

2ωc
· rτ
w
sin(φτ − ψ),

where we take average for variation of phases. Near
the Hopf bifurcation point, we fix ²c as a small positive
value and we assume that variation of r(t) and w(t) are
very slow in comparison with the phase φ(t) and ψ(t).
Moreover, in the case in which the difference between
ω0 and ωc is nearly equal to zero, the time derivative of
the phase φ is constant because the difference between
phases, θ = φ − ψ, can be a slowly varying quantity.
Namely, the delayed phase can be written as

φτ ∼ φ− τ φ̇
∼ φ−

½
ω0 − Kω0

2ωc
· w
r
sin θ

¾
.

Taking into account the situation considered above, we
obtain the equations for the amplitudes and the phase
difference as follows:

ṙ = f±(r) +
Kωc
2ω0

w cos θ

ẇ =
²c
2
w − Kω0

2ωc
r cos θ

+
Kω0

2ωc
rτ cos

µ
θ +

Kωcτ

2ω0
· w
r
sin θ

¶
θ̇ = ∆ω +

K

2

µ
ω0r

ωcw
− ωcw

ω0r

¶
sin θ

−Kω0rτ
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µ
θ +

Kωcτ

2ω0
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¶
,

where

f±(r) = ±
µ
²0
2
− r

2

8

¶
r2

θ = φ− ψ
∆ω = ω0 − ωc

If∆ω ∼ 0, θ varies slowly and the phase locking occurs
at θ∗ = 0 and θ∗ = π. After phase locking, amplitudes
are slowly attracted to the steady states,

(w∗, r∗) =


(0, 0)µ
0,

r
²0
2

¶
with linear evolution, rτ ∼ r − τ ṙ. In this case, the
amplitude equation can be approximated as

ṙ = f±(r) + w0 (3)

ẇ0 =
²c
2
w0 − κ (r − rτ ) , (4)

where w0 = (K/2) cos θ∗w and κ = (K2/4) cos2 θ∗.
Equations (3) and (4) can be written as

r̈ +
n
κτ − f 0±(r)−

²c
2

o
ṙ +

²c
2
f±(r) = 0.

Figure 1: Results of LabView simulation for a sub-
to-super conversion. The target x(t), the control u(t)
and the difference between x(t) and x(t−τ ) are shown.
The control is switched on at t = 20.

Figure 2: Results of LabView simulation for a super-
to-sub conversion. The target x(t), the control u(t)
and the difference between x(t) and x(t−τ ) are shown.
The control is switched on at t = 100.

Because of r̈ ∼ 0, ²c > 0 and κτ > f 0±(r) + ²c/2, we
obtain

ṙ ∼ −f±(r) = f∓(r). (5)

This means that super-/sub- critical system can be
converted to sub-/super- critical system.

We carried out the simulation by use of Lab-
View. The parameters are set as (²0, ²c,ω0,ωc, τ ) =
(0.1, 0.1, 1.0, 1.0, 2π). Results are shown in Figs. 1
and 2. In Fig. 1, the subcritical system is converted
to the supercritical system by the control switched on
at t = 20 with K = 0.4 and then we can obtain the
stable limit cycle from the fixed point. In Fig. 2,
the supercritical system is converted to the subcriti-
cal system by the control switched on at t = 100 with
K = 0.4 and then we can obtain the fixed point from
a stable limit cycle. This is regarded as an amplitude
deth phenomenon occurs. Thus, we can comfirm the
varidity of the theory menshioned above by numerical
simulations.
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Figure 3: Bifurcation diagrams of Van der Pol oscil-
lators operating in (a) supercritical mode and (b) sub
critical mode. In both cases unstable states for ² < 0,
illustrated by dashed line, can be stabilized by the
time-delayed unstable controller.

Figure 4: The circuit diagram representing Van der
Pol oscillator. The circuit consists of OP-amps and
multipliers.

3. Experimental system

The conversion of stability in Hopf bifurcation sys-
tem should be realized in experiment. Let us start
from the following Van der Pol system :

ẋ = −y ±
µ
²x+

x3

3

¶
(6)

ẏ = x, (7)

Here ² represents a bifurcation parameter of Van der
Pol system. The values of sign in eq. (6) corre-
sponds to the operations in supercritical and subcrit-
ical modes, as illustrated in Fig. 3. In supercritical
mode, the system has an unstable steady state at the
origin for ² < 0. On the other hands, an unstable or-
bit is hidden in subcritical mode for ² < 0. A circuit
diagram representing Van der Pol equation is shown
in Fig. 4.

The both unstable states can be stabilized by the
following algorism with a time-delayed unstable con-

Figure 5: The conceptual figure of the conversion of
the stability in Hopf bifurcations. Both modes can be
changed into opposite modes with the unstable time-
delayed controller.

troller.

ẋ = −y(t)±
µ
²x+

x3

3

¶
+ w · f(x) (8)

ẏ = x (9)

ẇ = λcw −K (x− xτ ) f(x), (10)

where λc and K denote the strength of instability of
the unstable controller and coupling strength, respec-
tively. f(·) is feedback function which is selected as
sgn(x) mentioned above. The delay time τ should be
chosen to be fundamental period of the target system.
Here it should be remarked that the state of Van der

Pol oscillator is never invaded by the control signal w ·
f(x) after the control is achieved since control signal w
converges to zero. In our investigation the conversion
of operating modes shown in Fig. 5 was confirmed.

4. Results of experiments

In experiments the system written in eqs. (8)-
(10) was realized with many liner integrated circuits
such as operational amplifiers except for a delay ele-
ment constructed mainly from a FIFO system. The
set of parameters was chosen to be (²,λc,K, τ) =
(−0.1, 0.05, 0.1, 2π). We would like to show here the
case of supercritical operation mode (see ref [4] for
the subcritical operation mode), where periodic orbit
would converge to an unstable steady state located
at the origin. Figure 6 shows the time series of x(t)
and w(t), where T means a normalized time which
differ from measured time by time constant of integra-
tors implemented. Here the time series can be sepa-
rated into three phases as follows: Phase I, T < 0,
the state values were fixed at the initial condition
(x, y, w) = (0, 0, 0) ; Phase II, 50 ≥ T > 0, the sys-
tem operated in the free running mode whose behavior
obeys eqs. (6) and (7) ; Phase III, T ≥ 50, the un-
stable control was applied to the system. As shown
in Fig. 6, while the oscillation grew from the origin
in Phase II because supercritical mode has the sta-
ble periodic orbit, the oscillation disappeared in Phase
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Figure 6: The control process of van der Pol oscillator
operating in supercritical mode with the time-delayed
feedback controller. After onset of the control, i.e. in
Phase III, the stable oscillation disappeared although
w vanished.

III although control signal w converges to zero. This
means that the unstable controller changed from the
unstable steady state located in the origin to the sta-
ble one. In other words, supercritical operation was
converted equivalently to subcritical operation.

5. Conclusion

From the results employing Van der Pol oscillator as
an example, we guess that the time-delayed unstable
controller has a possibility to control oscillations in
wide field which come from Hopf bifurcation. In order
to verify experimental results, numerical simulations
by solving eqs. (9)-(10) with 4th order Runge-Kutta
method should be executed. Furthermore, we have a
plan to study on the possibility of the unstable control
for chaotic oscillations such as Lorentz system. These
investigations are still in progress.
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