
Performance Analysis of Applying Deep Learning
for Virtual Background of WebRTC-based Video

Conferencing System
Sangwoo Ryu

Graduate School of Artificial Intelligence
POSTECH

Pohang, Korea
rswoo@postech.ac.kr

Kyungchan Ko
Computer Science and Engineering

POSTECH
Pohang, Korea

kkc90@postech.ac.kr

James Won-Ki Hong
Computer Science and Engineering

POSTECH
Pohang, Korea

jwkhong@postech.ac.kr

Abstract—With the advancement of artificial intelligence(AI)
technology, AI is being used in various industries such as factory
automation and autonomous driving. Video conferencing systems
have also added functions that use AI to overcome the limitations
of existing algorithms, for example, super resolution and virtual
background functions using image segmentation. However, web-
based video conferencing limits the application of these features
due to a limited web browser environment. In this paper, we
introduce several approaches to apply deep learning in a web
browser environment to provide the features that use deep
learning models, and introduce image segmentation models used
for virtual background functions in each method and evaluate
their performance. Finally, we discuss areas that need to be
considered to apply deep learning models to web-based video
conferencing.

Index Terms—Artificial Intelligence, Deep learning, Web-based
Video Conferencing System, Virtual Background, Image Segmen-
tation, Quality of Experience

I. INTRODUCTION

Due to COVID-19, people have not been able to have face-
to-face meetings both in education and businesses. People have
been using video conferencing tools such as Zoom [25], We-
bex [26] and Vmeeting [17] for online work or education since
March 2020. To satisfy customers’ requirements and increase
the satisfaction of using the service, the video conferencing
service providers have been adding various additional features.
Some of the features show better performance when deep
learning [1] is applied than the classical approach [24]. Deep
learning can be applied to many features like super resolution
to improve the quality of the video, face alignment to show
the front side of the face, virtual background to change the
background of the users.

Video conferencing systems that require installation on
users’ devices can directly use programming languages like
Python/C++ and easily apply deep learning using a lot of ML
libraries. On the other hand, since most of the web applica-
tions are provided through JavaScript, deep learning should
be applied in a more restrictive environment in web-based
video conferencing systems. In this paper, among the many
application cases of deep learning, we focus on the virtual

background feature. We introduce the methods for applying
a deep learning model that performs image segmentation to
apply the function to the web environment according to the
application locations: server and client. Especially for the
client side application, we perform performance evaluation by
applying deep learning models to Vmeeting [17], which is
a WebRTC [13] based video conference system. Finally, we
summarize the areas that need to be considered in applying
deep learning models and present the necessary studies to
improve future performance and user experience.

II. BACKGROUND

A. Applying Deep Learning to Web Browser Environment

The way to apply deep learning to the web browser can be
divided according to location of the application. When a deep
learning model is located in the server, deep learning models
can operate using server resources (CPU, GPU) and server-
side code independently of the browser, existing methods can
be used. However, additional bandwidth usage is required
because input and output data must be exchanged with the
client side. This can be costly for service providers to build
servers and reserve bandwidth. In addition, privacy issues can
arise depending on the type of data, and delays in real-time
processing may exist due to computations on the server.

When a deep learning model is located in the client,
deep learning models can operate using the client device’s
resources. However, different clients use different devices, they
may have different user experiences.

Below we describe two methods of applying deep learning
models on the client side.

a) JavaScript Library: Google Open Source Project Ten-
sorFlow [2] provides the TensorFlow.js library for machine
learning on the web. TensorFlow.js provides pre-trained mod-
els for typical use cases like image classification, object
detection, and so on. TensorFlow supports multiple backends
for storage and math operations, including CPU, WebGL,
WASM(Web Assembly) [18]. JavaScript can be extended to
mobile environments via React Native [19] and IoT devices via

©Copyright IEICE - APNOMS 2021 53



Fig. 1. Example of TensorFlow Lite Web Assembly Pipeline

Node.js [20] as well as browsers. In addition to TensorFlow.js,
JavaScript libraries such as Keras.js and ConvNetJS provide
tools for applying deep learning to web browsers [3].

b) WebAssembly: Web assembly [4] is a technology that
runs code written in C/C++ on the web by converting the
code into binary format and executes it on a virtual machine.
For example, we can build TensorFlow Lite [21], a machine
learning framework for mobile and IoT devices written in C++,
into a web assembly module, or build programs containing
the entire inference process, including those libraries. Then
we load the module from JavaScript and use a model. Web
assembly generally shows high speed for computation than
pure JavaScript. Google Meet built a Mediapipe, Google Open
Source framework for machine learning application to real-
time images, as a web assembly, and performed background
separation for the virtual background function using a deep
learning model [5]. Web assembly is currently supported by
browsers such as Chrome, Safari and Firefox since 2017 and
are supported by approximately 90% of devices [6]. Because
it is used over JavaScript, it can be used on mobile/IoT devices
using React Native or Node, as can the JavaScript library.

Fig. 1 shows the pipeline when TensorFlow Lite is built and
used as a web assembly. Additional options such as single
instruction, multiple data (SIMD) and multi-threads can be
used when we use web assembly to accelerate deep learning
operations.

B. Image Segmentation

Image segmentation is the task of outputting a pixel-by-pixel
mask by judging the location, shape, and pixel of the object
in the image. Image segmentation can be used in autonomous
driving to distinguish roads, cars, people, etc. or in medical
images to determine the location of specific tumors. In video
conferences, it can be used for virtual background functions
that separate a person from background to create masks and
draw backgrounds. Fig. 2 shows an example of a virtual
background applied to video conferencing in practice.

Fig. 2. Left - Original, Right - Virtual Background

DeepLab [7, 8] is a representative deep learning model for
image segmentation. MobileNet [9-11] which is specialized in
mobile environments is also constantly being studied.

C. Web-based Video Conferencing System

Fig. 3 shows the basic structure of a WebRTC-based video
conferencing system. It consists of a signaling server that
informs the connection point of clients by exchanging signals
using Session Description Protocol (SDP) [12], and a relay
server that delivers data such as video and audio.

Fig. 3. Architecture of WebRTC-based Video Conferencing System

III. PERFORMANCE ANALYSIS

This section presents a theoretical bandwidth usage when a
deep learning model is applied to a server, and the performance
of various application methods when a deep learning model is
applied to a Vmeeting client.

A. Server-side Application

When applying a deep learning model to a server, per-
formance is determined by the performance of the server’s
resources (CPU, GPU) because the client’s resources are not
used. However, since data needs to be transferred to the
server and transferred back to the participating client, tasks
directly related to resolution, such as super resolution (SR)
[22, 23] directly affect the bandwidth usage on the server.
Prior calculation of bandwidth usage is required to perform
such tasks. For tasks such as background separation for virtual
background functions, the bandwidth is not affected because
it is not related to the resolution.

B. Client-side Application

When applying a deep learning model to a client perfor-
mance is determined by the performance of the client device’s
resources. As with server applications, depending on the task
and the method, it affects bandwidth usage. In case of super
resolution (SR), when performing SR on the sender side, both
bandwidths are affected from the client to the server and
from the server to the client. On the other hand, there is no

©Copyright IEICE - APNOMS 2021 54



TABLE I
PERFORMANCE OF TENSORFLOW.JS MODELS WEBGL BACKEND

MobileNet-V1

Multiplier QuantByte=2 QuantByte=1
Size FPS Infer.Time (ms) IoU Size FPS Infer.Time (ms) IoU

1 ˜6MB 8.15 80.47 0.9510 ˜3MB 8.95 79.01 0.3012
0.75 ˜2MB 9.01 69.45 0.9518 ˜1MB 8.54 70.63 0.8760
0.5 ˜1MB 9.59 61.4 0.9074 ˜0.6MB 10.52 57.53 0.7961

ResNet50

-
QuantByte=2 QuantByte=1

Size FPS Infer.Time (ms) IoU Size FPS Infer.Time (ms) IoU
˜45MB 3.96 202.36 0.9648 ˜22MB 3.98 205.27 0.9649

TABLE II
PERFORMANCE OF MODEL LOADED USING WEBASSEMBLY

Google Meet Segmentation Model

Model Input Size non-SIMD SIMD
Size FPS Infer.Time (ms) IoU Size FPS Infer.Time (ms) IoU

256x144 400KB 14.59 19.08 0.9786 400KB 18.1 6.96 0.9786
190x96 400KB 17.52 9.39 0.9761 400KB 19.07 3.4 0.9761

DeepLabV3

-
non-SIMD SIMD

Size FPS Infer.Time (ms) IoU Size FPS Infer.Time (ms) IoU
2.7MB 3.12 256.9 0.9148 2.7MB 8.34 66.69 0.9148

Fig. 4. Expected Bandwidth Usage in 2x Super-Resolution Operation

significant difference from general video conferences when
performing SR only on the video of the person displayed on
the screen on the receiver side.

Fig. 4 shows expected bandwidth usage of conducting 2x
SR, which doubles the width and height of images with N
participants and the default bandwidth transmitted to the video
conference server at M kbps for the 4 cases: Normal case,
applying on the server side, on the client(Sender) side, and on
the client(Receiver) side.

Below we show the performance of applying the image
segmentation model, which can be provided or used in each
application method, to Vmeeting which is a video conference
based on WebRTC [13]. This model does not significantly
affect bandwidth because it does not change the resolution of
the image.

FPS (Frame per Second) and model inference time used
an average of 100 seconds of results performed on Chrome
browsers on a 2.90 GHz i5-9400F CPU, 16.0 GB RAM desk-
top PC. Model size used information from official documents.
We used a virtual camera provided by the live streaming
support program OBS Studio [14] and repeatedly played a
10-second-long ”Akiyo” video sequence, which is similar to a
video conference in which only the upper body comes out in
an indoor environment. IoU(Intersection over Union) is used
as accuracy metric of image segmentation task and calculated
using MATLAB jacarrd function. It used an average of 5
frames of video sequence(1s, 3s, 5s, 7s, 9s).

a) JavaScript Library - TensorFlow.js: TensorFlow.js
provides Body-pix [15] as a model for person-background
separation, ResNet50 [16] and MobileNet-V1 [9] can be
selected as deep learning models and some parameters can
be adjusted manually to resize the model. In addition to the
models provided, custom models can be loaded and used if
necessary.

There are many factors that determine the speed and ac-
curacy of deep learning models. For example, quantization
is a method of quantifying float parameters with fewer bits
to speed up computation and memory access, and it can
affect model size, inference speed, power consumption, and
accuracy. Also, the depth of the convolution operation affects
the number of parameters and thus the accuracy. Table I shows
the performance of the background separation task in video
conferencing when applying MobileNet-V1 and ResNet50,
both using a WebGL backend. QuantBytes represents the
number of bytes for weight quantization, and Multiplier is a
parameter that determines the depth of convolution operations.
The table shows smaller quantification and the larger the depth
of the convolution operation, the larger the model size.

©Copyright IEICE - APNOMS 2021 55



With MobileNet-V1, a larger model tends to have slow
inference time but higher accuracy (IoU) and with ResNet50,
there was no meaningful difference with the change in quant-
Byte.

b) WebAssembly: To use Web Assembly, a custom model
is needed that works with the machine learning library to use.
For example, TensorFlow Lite provides pre-trained models for
typical machine learning tasks that can work with TensorFlow
Lite.

Table II shows the performance of the background sepa-
ration task in video conferencing when applying improved
MobileNetV3-small model that is provided by Google Meet
under the Apache 2.0 License and DeepLabV3 [7] that is
provided by TensorFlow Lite.

The Google Meet Segmentation model has shown better
performance than the relatively large DeepLab-V3 model
because according to the Google Meet Segmentation model
documentation, it uses channel attention method to make the
model friendly to CPU inference, uses quantization, thus the
total number of parameters is 193K. Both models show better
speed with same accuracy when using SIMD.

Among different models, while DeepLabV3 and Google
Meet Segmentation model uses encoder-decoder structure,
MobileNetV1 and ResNet uses fully convolutional networks,
which the upsample process is not trainable and may result in
poor accuracy.

Vmeeting is currently using Google Meet Segmentation
model for virtual background feature.

IV. CONCLUSION & FUTURE WORK

In this paper, for the application of deep learning in a limited
web environment, we described the application methods of
deep learning models in web-based video conferencing ac-
cording to two application locations: servers and clients. In
particular, for the client side application, we introduce two
approaches, JavaScript libraries and Web assemblies and ana-
lyzed bandwidth usage and performance with each approach.

Various factors must be considered when applying deep
learning to web-based video conferencing. First, since resource
and network bandwidth usage may vary depending on the
task, it is necessary to analyze them in advance and select
the appropriate model application location. In addition, since
the machine learning inference methods/libraries introduced
in this paper vary in speed depending on model size and
computation volume, the model application method should be
chosen for the model we intend to use. The deep learning
model research to optimize the model is also being done, not
just to boost performance. Since image processing must be
performed in real time in web services such as video confer-
encing, deep learning model selection is required considering
both performance and optimization. Finally, it is necessary to
study methods to accurately and naturally show the outputs of
deep learning models.

Since the performance of the model depends on client
device performance when using deep learning models on the

client side, we need to study the application of deep learning
models that can adapt to the environment to avoid harming the
user experience in real-time video conferencing environments.
At the same time, models for low-performance devices, such
as MobileNet models, also require continuous improvement
research.

ACKNOWLEDGMENT

This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (2018-0-
00749, Development of Virtual Network Management Tech-
nology based on Artificial Intelligence) and the ITRC (Infor-
mation Technology Research Center) support program (IITP-
2021-2017-0-01633).

REFERENCES

[1] LeCun, Y. et al. ”Deep learning,” Nature 521, pp. 436–444, 2015,
(https://doi.org/10.1038/nature14539).

[2] Martı́n Abadi et al., ”TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, (https://tensorflow.org).

[3] Ma, Y. et al.. ”Moving Deep Learning into Web Browser: How Far Can
We Go?,” World Wide Web Conference, pp. 1234–1244, Association for
Computing Machinery, 2015.

[4] Haas, A., et al. ”Bringing the Web up to Speed with WebAssembly,”
SIGPLAN Not., 52(6), pp. 185–200, 2017.

[5] Background features in google meet, powered by web
ml. (2020, October 30). Retrieved March 23, 2021, from
https://ai.googleblog.com/2020/10/background-features-in-google-
meet.html

[6] Can I use... support tables for HTML5, css3, etc. (n.d.). Retrieved March
23, 2021, from https://caniuse.com/wasm

[7] Chen, L.C. et al. ”Rethinking Atrous Convolution for Semantic Image
Segmentation,” arXiv e-prints, arXiv:1706.05587, 2017.

[8] Chen, L.C. et al. ”Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation,” arXiv e-prints, arXiv:1802.02611,
2018.

[9] Howard, A. et al. ”MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” arXiv e-prints, arXiv:1704.04861,
2017.

[10] Sandler, M. et al. ”MobileNetV2: Inverted Residuals and Linear Bottle-
necks,” arXiv e-prints, arXiv:1801.04381, 2018.

[11] Howard, A. et al. ”Searching for MobileNetV3,” arXiv e-prints,
arXiv:1905.02244, 2019.

[12] Handley, Mark et al. ”SDP: Session Description Protocol,” IETF,
doi:10.17487/RFC4566, RFC 4566, July 2006.

[13] A. Bergkvist et al. ”WebRTC 1.0: Real-time communication between
browsers,” W3C Working Draft, Feb. 2015.

[14] OBS studio, https://obsproject.com/
[15] Tensorflow. BodyPix - Person Segmentation in the Browser,

https://github.com/tensorflow/tfjs-models/tree/master/body-pix
[16] He, Kaiming et al. ”Deep Residual Learning for Image Recognition,”

pp. 770-778. 10.1109/CVPR.2016.90, 2016.
[17] Vmeeting, https://vmeeting.io
[18] Haas, A. et al. ”Bringing the Web up to Speed with WebAssembly,”

SIGPLAN Not., 52(6), pp. 185–200, 2017.
[19] React Native, https://reactnative.dev/
[20] Node.js, https://nodejs.org/
[21] TensorFlow Lite, https://www.tensorflow.org/lite
[22] Yang, W. et al.. ”Deep Learning for Single Image Super-Resolution: A

Brief Review,” arXiv e-prints, arXiv:1808.03344, 2018.
[23] Anwar, S. et al. ”A Deep Journey into Super-resolution: A survey,” arXiv

e-prints, arXiv:1904.07523, 2019.
[24] Alom, Md. Zahangir et al. ”A State-of-the-Art Survey on Deep Learn-

ing Theory and Architectures,” Electronics. 8. 292. 10.3390/electron-
ics8030292, 2019.

[25] Zoom, https://zoom.us/
[26] Webex, https://www.webex.com/

©Copyright IEICE - APNOMS 2021 56


