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I. INTRODUCTION

Currently,  spread  such  as  smartphones  or  products 
equipped with communication functions, the use of wireless 
communication has increased. Along with the increase, its 
use is also wide-ranging. In wireless network, each channel 
assigns to each communication. Then, if the same channel 
uses at close range, comfortable communication can not be 
performed by interference. To consider this problem, it  is 
known  widely  how  to  replace  the  channel  assignment 
problem to the coloring problem of graphs.

 Generally, the coloring problem in graph theory, vertices 
or edges of a graph are assigned colors such that no two 
adjacent vertices or edges have the same color.  Reducing 
the number  of  colors  in  the  graph associate  reducing the 
number of channels used in the wireless network. 

  When  we  consider  a  graph  coloring  as  a  model  of 
communication,  we  must  choose  a  suitable  coloring 
condition that communication methods and performance of 
the terminal are assumed. In usual, the model of wireless 
network is the strong edge coloring such a way as to prevent 
interference.  The strong edge coloring of  the graph is  an 
assignment of colors to the edges such that every two edges 
of distance at most two receive different colors. To use the 
strong edge coloring is due to that co-channel interference 
dose not occur. But co-channel interference may not occur 
in the conditions of  it.  Therefore,  it  has been proposed a 
number  that  different  colorings  being  more  tightly  or 
considering the performance of the terminal.

  In this paper, we pick up some colorings and a extension 
of them, show the minimum number of colors (called the 
chromatic  number)  on  the  graph  whose  degrees  are 
constant. ���

 II. DEFINITION

We define some of the terms for discussion. G = (V(G), 
E(G)) is an undirected graph such that V(G)  is the set of 
vertices and E(G) is the set of edges, |V(G)| and |E(G)| is the  
number  of  each elements.  The degree  of  a  vertex  v  in  a 
graph, denoted by deg(v), is the number of edges incident 
with v.  Tree T  is  the graph that  is  connected and has no 
cycle. In this paper, we use the tree where the degree of all 
vertices except the endpoints is constant value d and the size 
of the tree is enough large. It is called the d-constant tree, 
denoted by ��� . 

Path  p(u,v)  is  a  sequence  of  edges  which  connect  a 
sequence  of  vertices  between  two  vertices  u  and  v,  the 

distance dist(u,v) is the number of edges in the shortest path 
between u and v. The distance dist(e,e’) between two edges 
e  =  (u,v)  and  e’  =  (w,q)  is  defined  as  min{dist(u,w), 
dist(u,z),  dist(v,w),  dist(v,z)}.  Therefore,  the  distance 
dist(v,e’)  between a vertex v  and an edges e’  = (w,z)   is 
defined  as  min{dist(v,w),  dist(v,z)}  (Fig.1).  We  use  the 
structure of an ��� -ball to consider the chromatic number, the 
following is the definition of it.[1]

Definition  1.  For  a  graph  G  and  an  integer  ��� ��� 0,  we 
define an ��� -ball as a maximum subgraph ��� ���  G such that 
every two edges of ���  are at distance ���  or less from each 
other .

When we build ��� , to start at the middle of ��� and move 
outward. This middle of ���  is denoted by ��� , define as a  
set of a vertex if ���  is even, or two vertices joined by an 
edge if ���  is odd. Since ���  does not have a cycle, an ��� -ball 
���  is the subgraph induced by the set of vertices that are at 
distance of less than or equal to ���  from ���  (Fig.2). In 
other words, if ��� , the ���
��� is ���  that is the subgraph induced in G by Q. Let 
e, e’ be edges that incident endpoints of ��� , dist(e,��� ) = 
dist(e’,��� )  =  ��� ,  and  if  p(e,e’)  has  all  ��� ,  certainly 
dist(e,e’)  =  ��� .  That  is,  farthest  two  edges  in  ���  always 
through ��� . There is no ambiguity, the ��� -ball in the graph 
will be denoted ��� .
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Fig. 1.  The distance of vertices and edges.

dist(u, v) = 3

dist(e, e’) = 3
and
dist(v, e’) = 3

Fig. 2.  The    -ball and the distance from    . (d = 3)ℓ Cℓ
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III. CHROMATIC NUMBER OF D-CONSTANT TREE

3.1 ��� -distance edge coloring
For an integer ��� ��� 0, the ��� -distance edge coloring of the 

graph is an assignment of colors to the edges such that any 
two edges e and e’ with dist(e,e’) ��� ���  have different colors.
[1] (Fig.3). A 0-distance edge coloring is the ordinary edge 
coloring and a 1-distance edge coloring is the strong edge 
coloring. This coloring has been mainly assumed the sensor 
network[2].  In  the  case  of  the  sensor  network,  it  is 
considered the situation, such as a number of terminals exist 
in the communication range of the terminal. 

The chromatic number is the minimum number of colors 
required to assign to all edges in the graph. The following 
theorem gives the chromatic number of the��� -distance edge 
coloring of ��� .

Theorem 1. Let ��� be the d-constant tree, ��� ��� 0. Then, the 
��� -chromatic number ��� is given by:���

Proof.   Fist  of all,  we consider the size by ��� -ball  ��� . 
The number of edges from ���  within ��� ,  through one 

incident edge of ��� is ��� . ��� ’s 
incident  edges  equal  to  d  (��� :even)  and  2(d-1)  ( ��� :odd).   
(The gray edges in Fig.2.) Therefore, ���  is (1). 

From Def.1, the edges of ���  should be assigned different  
colors  each  other.  Then,  it  shows  that  we  can  color  the 
whole in ��� by ���  colors only. The following will be 
described for the case of ��� is even. 

Let a vertex r of ���  select as ���  and corresponding ��� -
ball that is denoted by ���  is assigned colors. Next, we 
select the adjacent vertex r’, and assign colors to ��� . We 
repeat this coloring around vertices already chosen as ��� . 
Herein we can see that two subgraphs ���  and ���  can 
share  some  edges,  and  ���  has  already  been  assigned 
colors. Let e  be a uncolored edge of ��� ,  then e  is the 
farthest edge of ���  from edges already colored without 
��� . The distance between e and them is over ���  because 
the pass through the ��� .  And edges within a distance ���  
from e  is  uncolored without belonging to ��� .  Therefore, 
when we assign color to e, we can use  the rest of a set of 
���  colors completely (Fig.4). Hence, it is possible to 
color the whole ��� . The case of the odd is also same way 
but ���  is two vertices, we consider it with respect to the 
edge of ��� .

3.2 f-edge coloring
 For a integer f��� 0, the f-edge coloring of a graph colors 

edges so that deg(v,c) ��� f  where deg(v,c) in a graph is the 
number of edges incident with v and that have color c. 

In  other  words,  it  can  be  assigned the  same color  to  f 
edges in each vertices (Fig.5). 1-edge coloring is the general 
edge coloring. This coloring is considered to be applied to 
the  scheduling  problem  for  parallel  processing[3].  The 
following theorem gives��� .

Theorem 2. Let ���  be the d-constant tree, f ��� 1. Then, the 
f-chromatic number ���  is given by:

Proof.   If a distance of two vertices is more than or equal 
to 2, these can be assigned a same color.  So we assume the 
coloring of 0-ball on f-edge coloring. Since this coloring can 
be assigned the same color to f edges, certainly 0-ball is able 
to be coloring by (2). The coloring process is the same as 
Theorem1. Consequently, it is possible to color the all edges 
of ��� .
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3.3 ���  edge coloring

 Let a vertex be v on edge e = (u,v) and an edge ei (i = 1,2,
…, n) which has the same color of e and dist(v,ei) = ��� . For 
a integer ��� ��� 1 and ��� ��� 0, ��� edge coloring is assigned 
colors  to  edges  in  the  same  way  of  ��� -distance  edge 
coloring, but it is possible that a number of edges ei is equal 
to or less than ��� . When e allows some ei by the endpoint v, 
the  number  is  called  the  allowable  amount  of  e  with  v    
(Fig.6).

CIR  edge  coloring   introduced  [4]  is  the  method  in 
consideration  of  the  degree  of  interference  into 
consideration. Although edges in it have the weights in [4], 
we  assume  that  the  all  weight  is  one  in  this  paper.  In 
addition, not only for the ordinary edge coloring and it was 
extended to ��� -distance.

We  use  the  new  structures  to  assume  this  chromatic 
number. ��� is a set of edges in ��� such that if a edge e��� ��� , 
dist(e, ��� ) = ���  in ��� . These edges are end of ���  in case of 
���  and then the number of edges of ��� ,

          ���

Here  we  define  graph  ���  with  ��� .  ���  is  called  the 
allowable graph. ���  is the graph defined on the ��� -ball and 
able to have elements only the edges included in ��� . That 
is, the vertices of ���  is the edges of ��� . ��� (j = 1, …, n) is 
the connected components in��� , then ���  will be showed 
the number of ���  n. ���  doesn’t contain a trivial graph.

 For e, e’ and e” ��� ��� , satisfies the following conditions.

1. If a edge (e,e’) ���  ��� , dist(e,e’) = ��� .
2. If edges (e,e’), (e’,e”) ���  ��� , (e,e”) ��� ���  and   

dist(e,e”) should be ��� .
3. If a edge (e,e’) ���  ��� , e and e’ should be assigned 

the same color when edges of ���  are assigned colors.

From above  condition,  all  ���  is  complete  graph,  and 
edges of��� included��� are assigned the same color (Fig.7). 
Represented  by  ��� ,  is  where  edges  we assign  the  same 
color to in��� , we decide the struct of ��� when we assign 
color to ��� . 

The chromatic number is composed of the ��� -chromatic 
number  and  the  number  of  allowable  colors  that  varies 
depending on ��� . This result, the chromatic number and ���  
can be seen to correspond in case of ���  is odd. But if ���  is 
even, these are affected by the structure of ��� .

Theorem 3. Let a integer c, ��� ���  0, ���  ���  1 and  let  ���  be 
the d-constant tree and ���  be the allowable graph. Then, 
the ��� -chromatic number ���  is given by:

such that ��� and

Proof.   We have already decided the structure of ���  and 
get  a  corresponding  c.  Then  it  shows  that  the  chromatic 
number ���  is (4) and the allowable amount ���  is whether 
it  is  necessary  the  number  of  how  much.  Finally,  we 
represent a range that could be taken of c and ��� .

Let assume the coloring in ��� -ball ��� that is the ��� -ball of 
��� -distance. When ���  is already determined, the colors that 
assign to ���  reduce only the elements one drawn for each 
��� . In total, can be reduced the number of colors c,

To color the whole ��� , we also use the process of Th.1. 
When  ���  is  moved,  corresponding  edges  of  ���  move 
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together.  Therefore,  all  edges  of  ���  can  be  colored  with 
��� - c = ��� - c colors. The uncolored edges in ���  
should be assigned in accordance with ���  (Fig.8).

Next we consider that how many ���  is necessary in above 
condition.  Since  required  the  allowable  amount  for  each 
edges  may  be  different  individually,  in  this  proof,  we 
examine the average per edge. One of edge of ���  shows 
that  corresponding two edges of  ���  have one edge of  ei 
each other. Then, the allowable amount in ���  is the same to 
��� ,  and so  the  average  per  the  endpoint  of  ���  is 
��� /��� . But one edge is included as a endpoint in 
some ��� -ball. The number of ��� -ball of it is the number of 
���  that a distance is ���  from one edge ( ���  is odd, ���  is 
two. So we select by further one) (Fig.9).  Then, for a edge 

e, the number of ���  that include e as a endpoint is ���

( ��� :even)  or  ��� ( ��� :odd).  If  the  average  of  the 
allowable  amount  per  edge  in  ���  is  denoted  by  ��� , 
considering ���  is positive integer, it is

���

If ���  is odd, this result is so simple, because ���  has only 
components of ��� ( ���  is the complete graph of n vertices). 
Edges of ��� in a same ���  should be separated from each 
other ��� -1, so a ���  only has one edge for each edges that is 
children  of  one  ��� .  Hence,  ��� =���  and 
���  = ��� ,  ���  .

In case of ���  is even, the above is not true because ���  
can have one edge for each edges that is children of one 
��� ’s incident edges, ��� ’s incident edges is d. And ���  may 
have components  in  addition to  ��� .  Then,  ��� and c  vary 
with how we decide the structure of ��� .

Finally, we examine the a range of c and ��� . Obviously, 
the lower bound of them is 0, then this coloring is ordinary 
��� -distance edge coloring. To obtain the upper bound, we 
consider the maximum ��� and the minimum ���  at 
that  time.  The  maximum  ��� =��� ,  the  maximum 
���  is d ( ��� : even) or 2 (��� : odd).(Fig.10) In ��� , all ���  
can be made up the maximum, then the minimum ��� =
��� /��� . Therefore, considering ��� = n(n-1)/2 and 
��� =��� ,  the upper bound of c  and ���  is 
the following,

if ���  is even,

���

���

if ���  is odd, 

���

��� .

But can be seen to try the calculation, when the above 
condition, ���  edge coloring is ��� -1-distance. Hence, ���  
edge coloring can be seen that varying from ��� -distance and 
��� -1-distance (Fig.10).

IV. CONCLUSION

 In  this  study,  we  considered  the  some  colorings  that 
assumes  in  channel  assignment  in  wireless  networks.  We 
also provided the chromatic number of them on the graph of 
tree that the degree is constant. 
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Fig. 9. The number of   -ball including the edge e.

Fig. 10. Explanations of the maximum c and    . 

ℓ
(even) (odd)ℓ = 2 ℓ = 3

ℓ = 3
χ 'CIRℓ = 13− 4 = 9

d = 3,β = (d −1)2 = 4,c = (d −1)2 = 4

ℓ = 2
χ 'CIRℓ = 9 − 4 = 5
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