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Abstract—The routing efficiency of structured overlay net-
works depends on the consistency of pointers between nodes.
This consistency can, however, break temporarily when some
overlay nodes fail, since it takes time to repair the broken
pointers in a distributed manner. Conventional solutions utilize
“backpointers” to quickly know the failure among the pointing
nodes, which allows them to fix the pointers in a short time.
Overlay nodes are, however, required to maintain backpointers
for every pointing node which incurs significant consistency check
and memory overheads. This paper proposes a novel light-weight
protocol; an overlay node gives a “testament” containing its
acquaintances (backpointers) only to its successor (i.e., clockwise
closest node), and other nodes are freed from maintaining it.
Our carefully-designed protocol guarantees that all acquaintances
are registered with the testament even in the presence of churn,
and the successor notifies the acquaintances for the deceased.
Even if the successor passes away and the testament is lost, the
successor of the successor can identify the acquaintances at a high
success ratio. Simulations show that our protocol greatly reduces
the mean time to repair (MTTR) and memory overheads while
messaging cost increases.

I. Introduction

Several “log N” structured overlay networks have been
proposed such as Mercury [1], Symphony [8], and Pastry [11];
they provide an efficient routing service of just O(log N) hops
with O(log N) pointers (i.e., node IDs) per node in a network of
N nodes. A pointer becomes void if the pointee node fails (or
irregularly leaves the network). In structured overlay networks,
an overlay node periodically sends messages to its pointee
nodes (e.g., Pastry extension [2]), and if it detects that a node
has failed, the corresponding pointer is updated to indicate
another node. A set of overlay nodes that maintain pointers
to the same failed node is called a set of “backpointer” nodes
for the failed node [15], and all of them have to update the
broken pointer to ensure consistency. In the structured overlay
networks, backpointer nodes try to repair their broken pointers
independently, and it takes a long time for all backpointer
nodes to complete the repair.

Cooperative keep-alive protocols such as SN+BPTR [15]
focus on improving the repair time for node failure and the
keep-alive message overhead in those overlay. These protocols
force overlay nodes to maintain a set of backpointers for
their pointers (Fig. 1a). From the figure, if node j detects
node i failure, it immediately notifies the backpointer nodes
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Fig. 1. (a) Conventional cooperative keep-alive protocols. (b)Our protocol.

(k and l) of the i’s failure. Comparing the time taken to
repair all broken pointers with plain overlays, the conventional
cooperative keep-alive protocols greatly reduce the time if
their keep-alive messaging frequencies are the same values.
This is because the repair process completes just after the
first nodes detect the failure. However, maintaining a set of
backpointers for all pointer nodes imposes heavy memory
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overheads on overlay nodes, i.e., O(log2 N) states per node. In
addition, O(log N) backpointee nodes must be updated through
periodically keep-alive messaging after a single node joins or
leaves.

This paper proposes another cooperative keep-alive pro-
tocol that relies on only a single set of backpointers per
node (Fig. 1b) in the mentioned periodic pointer management
overlays. In our protocol, backpointers are maintained by just
the successor. From the figure, if node j detects i’s failure,
node j notifies the successor si of the failure, and then node
si forwards it to i’s backpointers. Our protocol repairs the
broken pointers just after the first detection, and only O(log N)
states need be held. Backpointers are kept updated so as not
to miss any pointing node, since our protocol is designed to
preserve invariance between a pointer and backpointer. Even if
the successor fails as well and the backpointers are lost, they
can be estimated from identifier shifts, which is described in
III-C.

Our protocol is simple but effective. It is evaluated in
comprehensive simulations extending Pastry [2]. Our protocol
notifies all backpointer nodes rapidly compared to the conven-
tional cooperative keep-alive protocol. The memory overhead
is reduced by several orders of magnitude compared to the
conventional protocol, and the messaging cost is only 8%
larger than the conventional protocol.

II. RelatedWork

SN(P)+BPTR [15] utilizes a pointer node to find the
backpointers ; e.g., in Fig. 1a, node i maintains its back-
pointers (nodes j–l), and tells them themselves. Let I be
the keep-alive interval used in plain overlay networks and
let K be the base of the overlay network (e.g., K = 2 in
Mercury [1] and Chord [13]), these conventional cooperative
keep-alive protocols require roughly the time of I

logK N
to

notify all backpointer nodes on average, while plain overlay
networks need I. However, each overlay node has to maintain
backpointers of every pointer, i.e., up to O(log2 N) entries,
since each of O(log N) pointers has O(log N) backpointers.
This overhead undermines the primary advantage of structured
overlay networks; i.e., O(log N) hop routing is realized only
with O(log N) states per node. In our protocol, each node
maintains backpointers of predecessor only (Fig. 1b), so the
state amount is O(log N).

SN(P) is also proposed in reference [15] and it does
not maintain backpointer states. In SN(P), a node notifies
pointee node failure to all pointee nodes, not backpointee
nodes. Therefore, the detection time is less improved than
that of SN(P)+BPTR. CKA [4] utilizes backpointers, but it
is aimed at reducing the number of messages in pointer repair,
not accelerating repair times. Reference [9] assumes multiple
overlay networks are established on a single set of nodes, and
node failures are shared between the networks.

References [3], [6], [10], [12], [14] predict node failures
based on statistical failure models such as Weibull distribution;
they can reduce the number of keep-alive messages without
increasing failure detection delay. These techniques can be
integrated into our protocol to improve its performance.

Reference [5] employs a death certificate so as not to
resurrect a deleted item in distributed systems. This technique

ensures that the deleted item is never overwritten by an older
version, but it does not accelerate delete notification.

III. Proposed Protocol

This section details our proposes. Section III-A defines our
network model. Section III-B describes backpointer mainte-
nance routines, and Section III-C explains pointer repairs in
the case of node failure.

A. Network Model

Overlay nodes have their own IDs. The ID space is assumed
to be cyclically numbered and so we have to take a “modulo”
by the space size to avoid overflow, but we omit the modulo
operation in this paper for simplicity. The successor of node
i ∈ [1,N] is denoted by si, while the predecessor is denoted
by pi.

The set of pointers maintained at node i is denoted by Pi,
while the set of backpointers for node i is denoted by Bi; e.g.,
in Fig. 1b, P j = {i, · · · } and Bi = { j, k, · · · }. Clearly, we have,

i ∈ P j ⇐⇒ j ∈ Bi, (1)

if P j and Bi are correctly updated. In all structured overlay
networks, we can assume si ∈ Pi. In P of our protocol, each
entry is associated with the addresses of the corresponding
pointer node and its successor. Similarly in B, each entry is
associated with the address of the corresponding backpointer
node. Bk

i
indicates Bi maintained by node k (i , k).

Node j periodically sends keep-alive messages to node i ∈
P j to maintain pointers and backpointers, as will be described
in Section III-B. Upon failing to receive any response from
node i within a specified waiting period, node j investigates
node i’s state using several messages. If node j determines
node i has left the network, node j begins the pointer repair
process, as is described in Section III-C. We assume that
overlay nodes try several times to resend a message if a
response has been timed out. If node n joins, node n begins
the pointer update process described in Section III-B.

B. Backpointer Maintenance

Node i maintains a set of pointers, Pi, a set of backpointers,
Bi, and a set of backpointers of predecessor, Bi

pi
; Bi is used

for quick backpointer repairs in the case of successor failure,
though it is omitted in Fig. 1b1. This subsection discusses a
maintenance protocol of Bi

pi
(or B

si

i
below).

As noted as (1), consistent pointers and backpointers must
be i ∈ P j ⇐⇒ j ∈ B

si

i
. However, it is difficult to keep this

invariant in distributed systems, and so in our protocol it is
relaxed to,

i ∈ P j ⇒ j ∈ B
si

i
. (2)

This relaxed invariant is enough to repair all broken pointers,
since all pointers have the corresponding backpointers in (2).
The converse is not true, and so some backpointers can
be invalid, which merely raises some ineffective notification
messages.

1Note that in conventional cooperative keep-alive protocols, sets of back-
pointers maintained by node i are given by {Bi

j
: j ∈ Pi}.
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Fig. 2. Backpointer maintenance routine in first keep-alive.

Fig. 2 shows the backpointer maintenance protocol. Node i
receives a keep-alive message from node j. If j is not included
in i’s backpointer set, i.e., j < Bi, node i adds j to Bi and then
asks the successor, si, to add j to B

si

i
. Upon receiving an ack

from i, node j updates P j by i associated with si if i is not
included2. In this protocol, pointer i is never added to P j unless
j is not in B

si

i
, and so (2) holds.

If node i has not received at least one keep-alive from j in
a specified period, j is judged to have expired (Fig. 3). Node
i, then, asks j whether the corresponding pointer is valid. If
not (or no response received), j is removed from Bi. Ditto si.
Invariant (2) is still satisfied in this case. When node n joins
and finds all pointers by employed routing algorithm, node n
gets the Bi from the predecessor i and notifies i of own join.
Then, node i notifies both backpointer nodes listed in Bi and
the predecessor pi of updating si by n (Fig. 4). At the same
time, node i keeps successor node si of n. When node i detects
own successor si failure, the node i replicates own backpointers
to the successor node ssi

of si. Then, node i gets the successor
node sssi

of ssi
from ssi

. Finally, node i updates own successor
in both Bi and the predecessor by ssi

(Fig. 5).

Invariant (2) can break in a short time just after node i fails.
When node j detects i’s failure(not successor’s failure), node j
notifies the failure by pointer repair process. The critical period
is quite short since node i is quickly informed by our pointer
repair process.

C. Pointer Repairs

This section begins with the case of (2), that is, outside the
critical period; we then dive into the critical period in detail.
Assume that node i fails and node j detects the failure (Fig. 6).
Node j first removes i from the pointer set, P j, and notifies si

of i’s failure (node j maintains si’s address since i ∈ P j). Since
si is a substitute for i, si uses Bi as Bsi

and replicates it on ssi
.

Finally, node si asks nodes j and k’s to remove i from their
pointers and to add si to their sets of pointers. Throughout the
repair process, (2) is satisfied.

2In Fig. 2, if node i detects si’s failure in adding j to si, node i interrupts
the join process and updates the successor (Fig. 5). The join process is then
resumed. The impact of this is evaluated in the experiments
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Fig. 3. Backpointer maintenance on keep-alive expiration.
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Fig. 5. Backpointer maintenance on successor failure.

If node i fails in the critical period (i.e., nodes i and si fail
almost simultaneously, as shown in Fig. 7), detector j notifies
ssi

of i’s failure; the notification is destined for max(si) + 1
and is delivered to ssi

by overlay routing, where max(si) is
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Fig. 6. Pointer repairs with backpointers.

the upper bound of si’s range (e.g., max(si) = (si + ssi
)/2 in

Pastry). However, node ssi
does not have Bi.

Here, we describe how node j (possibly ssi
) can estimate

Bi using B j. We assume that Bi would look like B j if the
pointers are shifted by the distance between i and j, d(i, j). The
definition of d(i, j) differs according to the routing algorithms.
In Pastry and Chord [13], the distance d(i, j) means |i− j|. Given
the distance, a set of estimated backpointers, B′

i
, is determined

by shifting them,

B′i = {suc(d(i, j) + k) : k ∈ B j},

where suc(∗) is the successor node of the argument. Instead of
node si, node ssi

finds k ∈ B′
i

by overlay routing, e.g., querying
get((d(ssi

,i)+l)) l ∈ Bssi
. Then, ssi

notifies k ∈ B′
i

of i’s
failure. If the estimation succeeds i ∈ Pk, node k runs the
keep-alive routine of Fig. 2 with ssi

(the routine is omitted in
Fig. 7). After the repair process, (2) is restored by the keep-
alive function. However, Bi′ does not correspond exactly to Bi

in general and estimation can fail. In this case, the estimation
notification should be repeated by k to notify all the nodes in
Bi correctly.

Though we control the repeated notification process simply
by using time-to-live in the experiments, sophisticated selective
information dissemination technique [7] can be applied to
control the repeated notification. Unlike [4], our protocol
employs the repeated notification only if a node fails in the
critical period. There can be corner cases where our protocol
does not work In such a corner case, pointers cannot be
repaired soon, but eventually fixed as plain structured overlay
networks do.

IV. Experiments

Our protocol was evaluated by message level simulation
through original simulator. It was implemented based on
Pastry-extension(b = 4) [2]. Our protocol was compared with
a conventional keep-alive protocol (SN+BPTR(c = 3, k =
1,Tboost = 3) [15]) as well as plain in Pastry. The keep-alive
interval of node i was set at I · |Bi| while the other protocols use
I · log N. With this setting, the number of keep-alive messaging
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Fail 
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Fail to Notify 

Lookup & notify 

Estimate i  with Bssi 

Lookup & notify 

Node k  i 

else 

Estimate i with Bk  

Lookup & notify 

Keep-alive if i Pk 

Fig. 7. Pointer repairs with backpointers under successive node failures;
the dashed lines indicate that messages are delivered by overlay routing with
O(logK N) hops.

per second are approximately the same in all protocols (we
note that this keep-alive interval setting was accepted in [15]).
ID space was [0, 220−1]. Simulation was conducted for 86,400
time units for each plot. The other parameters are presented
in Table I. In the simulation, overlay nodes joined and left
the network with probability 1/L, and the network included
N nodes on average throughout the simulation. A node can
recognize a node failure by three keep-alive message timeouts
or receipt of node failure notification.

In Fig. 8, our protocol and the conventional protocol
outperformed the plain protocol. Our protocol had smaller
MTTRs than the conventional protocol even though it requires
repeated notification in successive node failures (Fig. 7).

Fig. 9 shows the probability of critical period occupancy;
it indicates that critical period occurred frequently with short
lifetimes, but the probability is considerably low.

Fig. 10 shows CDF of the number of pointers and back-
pointers maintained per node. The conventional cooperative
keep-alive protocol maintained many more backpointers than
our protocol. In particular, the most loaded node had 10 times
as many backpointers as our protocol. Fig. 11 shows the total
number of pointers and backpointers conveyed in messages.
Our protocol updated the backpointers stored on successor
node only when a node joins or leaves. On the other hands,
O(log N) backpointer nodes had to be updated through keep-
alive messaging after a node joins or leaves in conventional
protocol. For these reasons, the conventional protocol conveyed
10 times as many backpointers as our protocol.

Fig. 12 shows the sum of the number of messages for all
nodes, including all maintenance messages like neighbor dis-
covery, keep-alive, and failure notification. Our protocol used
only slightly more messages than the conventional protocol
despite the use of repeated notification because the probability
of the critical period occupancy was low(Fig. 9).
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TABLE I. Parameters Used in Simulation

K 2
N 1000
L [100, 1000]
I 10
T (0, 2); range of uniform distribution
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Fig. 9. Probability of critical period occupancy in
lifetime; N = 1000
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Fig. 11. The total number of pointers and backpoint-
ers conveyed in messages; L = 1000.
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Fig. 12. The number of messages for all nodes;
L = 1000.

V. Conclusions

This paper proposed a novel lightweight protocol that
repairs broken pointers in structured overlay networks. Since
our protocol preserves an invariancy between pointers and
backpointers, all the backpointers are quickly notified com-
pared to conventional cooperative keep-alive protocols even
if churn rate is high. Unlike conventional cooperative keep-
alive protocols which require each overlay node to maintain
O(log2 N) backpointers, our protocol needs only (log N) back-
pointers per node. These advantages of our protocol were
demonstrated by comprehensive simulations.
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