

NFV-Enabled Vertical Scalability for IoT Slices

Hafizhuddin Zul Fahmi

EECS International Graduate Program

National Yang Ming Chiao Thung University

Hsinchu, Taiwan

hafizhuddin4@gmail.com

Fuchun Joseph Lin

Department of Computer Science

College of Computer Science

National Yang Ming Chiao Thung University

Hsinchu, Taiwan

fjlin@nctu.edu.tw

Abstract—With network slicing, 5G is able to best support

heterogeneous IoT applications each with a specially tailored

virtual network, called IoT slice. NFV (Network Function

Virtualization) is the key enabler to virtualize a 5G network

into multiple IoT slices for different types of IoT applications.

All 5G network slices are required to support scalability for

their operations in order to deal with dynamic fluctuation of

incoming IoT requests. This research focuses on designing and

implementing an NFV-enabled vertical scalability system for

IoT slices according to their CPU loading. Our system is tested

using a traffic generator with three types of IoT services. Each

type of IoT services has a different QoS requirement, and the

system will forward it to a specific network slice according to

its requirement. We will evaluate the performance of vertical

scalability by comparing two systems: one system implements

vertical scalability followed by horizontal scalability while the

other system implements only horizontal scalability. Our aim

is to demonstrate that the former involves lower CPU

utilization and power consumption while still achieves

compatible response time and throughput when compared to

the latter.

Keywords—Vertical Scalability, Network Slicing, 5G, NFV,

IoT

I. INTRODUCTION

The advent of 5G has significantly increased the number
of connected IoT devices, enabling a wide variety of
applications with different QoS requirements. Furthermore,
by introducing network slicing, 5G will be able to support
every type of IoT application with a specially designed
virtual network, called IoT slice. NFV (Network Function
Virtualization) is the key technology that enables the
virtualization of a 5G network into multiple IoT slices. Each
IoT slice is required to support scalability for its operations
in order to handle the dynamic fluctuation of incoming IoT
requests. Scalability can be carried out in two ways, either in
horizontal or vertical manner. Horizontal scalability is to
scale out or scale in the number of VNF (Virtual Network
Function) instances in a network slice while vertical
scalability is to scale up or scale down the capacity of a VNF
instance without increasing or decreasing its number [1].

This research focuses on designing and implementing

NFV-enabled vertical scalability for IoT slices according to

their CPU loading. We will evaluate the performance of

vertical scalability by comparing two systems: one system

implements vertical scalability followed by horizontal

scalability while the other system implements only

horizontal scalability. Note that both vertical scalability and

horizontal scalability will be executed by the MANO

(Management and Orchestration) framework defined by

European Telecommunications Standards Institute (ETSI).

Our aim is to demonstrate that the system implementing

vertical scalability followed by horizontal scalability

involves lower CPU utilization and power consumption

while still achieves compatible response time and

throughput when compared to the system implementing

only horizontal scalability.

The rest of the paper is organized as follows: Section II
introduces the background information of IoT/M2M
plaftorms, Tacker, Openstack and NFV-enabled scalability
for IoT slices. Section III presents system design of NFV-
enabled vertical scalability. Section IV describes our system
testing and evaluation. Finally, Section V presents the
conclusion and future work of this research.

II. BACKGROUND

Broadly speaking, scalability can be carried out in two

ways, either horizontal or vertical scalability. However, in

the past, most of scalability research only focused on

applying horizontal scalability. For example, in [2] a master

node to track the amount of input and the percentage of

CPU loading on virtual machines and take actions of scale-

out and scale-in in order to achieve high scalability for a

VM based IoT/M2M was proposed. Then, in [3] we

proposed a highly scalable system for IoT/M2M traffic

based on OpenStack. Instead of using OpenStack-native

scalability methods, we designed a master node and a load

balancer to perform horizontal scalability.

In this research, we focus on applying NFV-enabled

vertical scalability to IoT/M2M systems based on the status

of CPU loading. The decision to explore vertical scalability

in our research is because applying horizontal scalability

immediately after the system is overloaded may not be

necessary. Vertical scalability can be applied first to scale

up or down the capability of a VNF before applying

horizontal scalability. By not increasing or decreasing the

number of VNF instances we can reduce the cost of

scalability when dealing with the changing load of IoT

systems [4]. Both CPU and memory could be scaled up and

down with the aim of increasing or decreasing the system

capability at a lower cost than immediately applying

horizontal scalability as in our previous research [5].

During experiments, several kinds of open source

software were utilized. The first is OM2M developed by

LAAS-CNRS [6] that provides the IoT/M2M service

platform to be run as a VNF in order to construct network

slices. Next is OpenStack, an open-source cloud operating

system that provides many cloud services [7] such as Nova

for provisioning compute instances, Neutron for networking

services, Swift and Cinder for providing object and block

storage, Keystone for providing identity and authentication

services, Heat for service orchestration and Horizon for web

frontend services. Then is Tacker, an open source project

©Copyright IEICE - APNOMS 2021 5

under OpenStack that implements NFVO and VNFM based

on the ETSI NFV MANO framework. It can manage

multiple VIM such as OpenStack and Kubernetes. In this

work, Tacker and OpenStack were utilized to support the

creation and deletion of network slices [8].

III. ARCHITECTURE AND DESIGN OF NFV-ENABLED

HORIZONTAL AND VERTICAL SCALABILITY

In this section, we explain the architecture of NFV-

enabled scalability, its system design including vertical vs

horizontal scalability workflow and its components including

master node, traffic generator, traffic monitor and load

balancer.

A. Architecture for NFV-enabled scalability

The NFV-framework developed by ETSI has four main
blocks: Operation Support System/Business Support System
(OSS/BSS), Virtual Network Functions (VNFs), Network
Function Virtualization Infrastructure (NFVI) and NFV-
Management and Orchestration (NFV-MANO) as depicted
in Figure 1. In this research, we use Tacker as NFVO &
VNFM and OpenStack as VIM. The NFV enables the
implementation of system scalability in terms of network
services and network functions. To support scalability, we
also design a Master Node in NFVO to support and
implement the horizontal and vertical scalability
mechanisms. The Master Node is integrated with NFVO via
Tacker APIs. Within Master Node, monitoring functions are
designed to detect the loading of each VNF in the NFV
system. Finally, OpenStack is used to provide functionalities
of VIM and NFVI.

B. System Design

New designs are required to implement scalability.
First, we need to design a new NSD in accordance with our
goals of implementing both horizontal and vertical
scalability in the NFV framework. MANO is in charge of
activating an NS, which is made up of a set of VNFs.
Virtual Links (VLs) link these VNFs, and VNF Forwarding
Graphs (VNFFGs) define the topologies of the VNFs. In
order to automate the scalability of network slices, we rely
on NSD and VNFD. The request from OSS/BSS to NFVO
to create an NS (or a network slice) would include an NSD
identifying the deployment flavor to be instantiated. The
NSD consists of VNFDs, VL Descriptors (VLDs), VNFFG
Descriptors (VNFFGDs) and other NSDs.

1) Vertical vs Horizontal Scalability Workflow

The vertical and horizontal scalability workflow is

shown in Figure 2. This workflow is driven by the incoming

IoT traffic load, We have set the overload threshold of the

system at 55% and the underload threshold at 10% [3].

Based on these thresholds, either scale-up/out or scale-

down/in will be triggered. If the monitor detects the CPU

loading of the VNF instance is more than the upper

threshold, the system will check whether the current

capacity of the VNF is still upgradable. If yes, the VNF will

be scaled up. Otherwise, the system will check if there is

still sufficient resource to create a new VNF instance. If yes,

the system will proceed with VNF scale-out. On the other

hand, if the monitor detects that the CPU loading of the

VNF instance is less than the underload threshold, the

system will check whether the VNF can be downgraded and

do scale down. Otherwise, the system will check whether

Figure 1. NFV Framework

Figure 2. Workflow for Vertical and Horizontal Scalability

the number of instances in the slice is more than 1. If so, the

number of VNFs will be decreased (i.e. scaled in).

2) Master Node

Master Node contains both Traffic Monitor server and

IL-Manager. It constantly checks the CPU loading of each

OM2M VNF instance from Traffic Monitor client for

underload and overload thresholds and trigger IL-Manager

for scalability actions with the support of Tacker APIs.

3) Traffic Generator

We have designed a traffic generator to produce 3

different types of traffic with different payload sizes. The

traffic generator will send traffic to the load balancer first.

The load balancer then will distribute the traffic evenly

according to the number of instances on the slice. These

three types of traffic are used to emulate three different

types of IoT applications including smart meter (low

payload), smart parking (medium payload) and video

surveillance (high payload).

4) Traffic Monitor

Traffic monitor in this research is divided into two

separate parts: client and server. The client is located on an

OM2M VNF instance that functions as a data collector to

report the CPU loading and memory size of the instance.

The server is located at the Master Node in NFVO, it

receives data from the client and make scalability decision.

5) Load Balancer

We utilize HAProxy as a load balancer to split the traffic

according to the predefined payload and subnet then send it

to VNF instances on 3 different slices. The distribution or

balancing of traffic between instances in each slice uses the

roundrobin algorithm as a scheduler which will send each

traffic to the OM2M instance in turn by RPC publisher [9].

©Copyright IEICE - APNOMS 2021 6

IV. SYSTEM TESTING AND EVALUATION OF VERTICAL VS.

HORIZONTAL SCALABILITY

In this section, we describe our experimental
environment, results and analysis when comparing our
proposed system with a horizontal scalability system only
system.

A. Experimental Environment

We use 2 physical servers with different capacities. Each
is equipped with Ubuntu 18.04 OS; one with Intel E-

52678V3 2.5 GHz processor and 128 GB RAM; the other
with Intel 2.5 GHz 6 Cores processor and 64 GB RAM.
Installed via DevStack on the first server are OpenStack
with Stable Rocky version as a VIM and a traffic generator
that we developed by ourselves. Then on the second server,
we installed Tacker as NFVO and VNFM with Rocky
version. Also on the second server, we have implemented
the master node and the traffic monitor inside the NFVO.
We use HAProxy as a Load Balancer and 2 OM2M VNFs
as IoT platforms. The former is configured with 2 vCPUs, 2
GB RAM and 20 GB storage while the latter are configured
with 2 and 3 vCPUs, 2 and 3 GB RAM and 20 and 30 GB
storage for each of OM2M VNFs, respectively.

B. Experimental Results and Analysis

 In this research, we compare the system implementing
vertical scalability followed by horizontal scalability against
the one implementing horizontal scalability only, in terms of
CPU utilization, power consumption, throughput and
response time. We evaluate the performances of both
systems under three types of traffic with different payload
sizes including a size of 380 bytes for smart meters, a size of
1000 bytes for smart parking and a size of 3000 bytes for
surveillance video.

The traffic generator sends each traffic type to a different
IoT slice during the testing, then the HAProxy on each slice
distributes the traffic evenly to the OM2M platforms. All
traffic types will be sent simultaneously to three different
slices. There are three phases in our testing, in the first phase
the traffic generator would send 10 requests per second
within first 120 seconds. This phase would trigger the first
scale up of the system. In the second phase, the traffic load
would be doubled to 20 requests per second for 240 seconds,
In this phase, the system will reach its peak load so that it
can trigger both scale-up and scale-out. In the third phase,
the system will run for 240 seconds by lowering the traffic
load to 5 requests per second. This is done so that the system
can scale in and scale down until it returns to the initial state.

The same three phases are also applied to the compared
system, namely horizontal scalability only, with the same
traffic load and total testing time for the purpose of
comparison.

Figure 3 shows the evaluation results of CPU utilization
between two systems. The system based on the horizontal
scalability required higher CPU utilization than our proposed
system in all three phases of testing. For example, the
compared system obtained a value of 38.86% in the first
phase, while our proposed system got 35.94%. Similarly in
the second phase, it is 49.23% for the compared system and
47.50% for the proposed system. This trend continues into
the third phase even with a decrease in CPU demands. As a
result, we can conclude that the proposed system has the
advantage of requiring less CPU resources than the

compared system. This result occured because in the
horizontal scalability only implementation, there are more
than 2 OM2M/VMs running simultaneously all the time to
handle the incoming traffic.

 Figure 4 shows the evaluation results of power
consumption by the server in watts between two systems. In
evaluating power consumption we use the formula of Power
Consumption = ��� ∗ ���% + � ∗ �	
��% [10] to
calculate the power consumption of each system where TDP
represents the microprocessor's Thermal Design Power
obtained from the product and for our physical server, it has
a value of 85 watts; K is the general power consumption of
memory modules, which is 6.258 W. Figure 4 shows that
the compared system with horizontal scalability only
consumes more power than our proposed system. For
example, in the first phase the compared system consumes
35.4 watts of power while our proposed system only
consumes 32.78 watts of power. Also in the second phase,
our proposed system consumes power at 43.34 watts while
the compared system consumes power at 44.92 watts. This
trend continues until the system reaches its third phase. So it
can be concluded that our proposed system consumes less
power than the compared system due to the same reason as
that for CPU utilization.

 On the other hand, the comparison results of the
throughputs for both systems are very close as shown in
Figure 5. The throughput results of our proposed system are
at 11.90, 13.79 and 12.95 requests/second that are very
close to those of the compared system with horizontal
scalability only at 12.18, 13.86 and 13.12 requests/second.
The results show that the proposed system can achieve the
similar level of throughput as that of the compared system
due to timely actions of scale-up.

 The comparison results of the response time are shown
in Figure 6. Again, the response time results of our proposed

 Figure 3. CPU Utilization Results with Three Slices System

Figure 4. Power Consumption Results with Three Slices System

©Copyright IEICE - APNOMS 2021 7

Figure 5. Throughput Results with Three Slices System

Figure 6. Response Time Results with Three Slices System

Figure 7. Ratio of Savings for CPU and Power Consumption between

Compared System and Proposed System

Figure 8. Ratio of Degradation for Throughput and Response Time
between Compared System and Proposed System

system are at 3223, 3422 and 3240 ms that are very close to
those of the compared system with horizontal scalability
only at 3186, 3394 and 3217 ms. So, it can be concluded
that the proposed system can achieve a similar level of
response time as that of the compared system due to the
same reason as that for throughput.

 To make the comparison even clearer, Figure 7 and
Figure 8 show the ratios of the differences between two

systems in terms of both cost (i.e. CPU utilization and
power consumption) and efficiency (i.e. throughput and
response time) metrics. Figure 7 shows that CPU utilization
and power consumption have the ratios of differences
averaged around 6.5% for all testing phases, while in Figure
8, the ratios of differences of the two systems for throughput
and response time are averaged around 0.9-1.4% for all
testing phases. These two figures demonstrate that our
proposed system is not only more cost-effective than the
compared system but also keeps a similar level of efficiency
with that of the latter.

V. CONCLUSION AND FUTURE WORK

 We used several open-source systems such as
OpenStack, Tacker, HAProxy and OM2M to implement our
proposed solutions. Our contribution is to propose vertical
scalability and apply it first before horizontal scalability in
order to achieve low cost utilization. The evaluation results
show that our proposed system (applying vertical scalability
first, then horizontal scalability) is more cost effective than
applying horizontal scalability only while keeps close
efficiency to the latter.

In the future work, it is worthwhile to explore the

application of hybrid scalability to see whether we can

achieve even higher scalability with the same environment.

We can also explore the possibility of applying the ideas

developed for IoT slices to 5G core network slices.

ACKNOWLEDGEMENT

This work was supported by the Ministry of Science and

Technology (MOST) of Taiwan under MOST 109-2221-E-

009-083.

REFERENCES

[1] A. Gupta, R. Christie, and R. Manjula, “Scalability in Internet of
Things: Features, Techniques and Research Challenges,” Int. J.
Comput. Intell. Res., vol. 13, no. 7, pp. 1617–1627, 2017.

[2] F. J. Lin. and D. de la B. E. Cerritos, “High scalability for cloud-
based IoT/M2M systems,” 2016 IEEE International Conference on
Communication (ICC), pp. 1-6, May 2016.

[3] D. De La Bastida and F. J. Lin, “OpenStack-based highly scalable
IoT/M2M platforms,” Proc. - IEEE Int. Conf. Internet Things, pp.
711–718, June 2017.

[4] M. A. Razzaq, “Smart campus system using internet of things:
simulation and assessment of vertical scalability,” Indian J. Sci.
Technol., vol. 13, no. 28, pp. 2902–2910, 2020.

[5] T.Tsai and F. J. Lin, “Enabling IoT Network Slicing with Network
Function Virtualization,” Journal of Advances in Internet of Things,
Volume 10, Number 3, pp.17-35, July 2020.

[6] The Eclipse Foundation, “What is Eclipse OM2M?,” 2015. Accessed
on: April. 12, 2021 [Online] Available:
https://www.eclipse.org/om2m/.

[7] Openstack, “Software.”. Accessed on: April. 15, 2021 [Online]
Available: https://www.openstack.org/software/.

[8] Openstack, “Tacker - OpenStack NFV Orchestration.” Accessed on:
April. 13, 2021 [Online]. Available:
https://wiki.openstack.org/wiki/Tacker.

[9] Mitchell Anicas,” An Introduction to HAProxy and Load Balancing
Concepts”. Accessed on: April. 15, 2021 [Online]. Available:
https://www.digitalocean.com/community/tutorials/an-introduction-
to-haproxy-and-load-balancing-concepts.

[10] F. J. Lin. and D. de la B. E. Cerritos, “High scalability for cloud-
based IoT/M2M systems,” 2016 IEEE International Conference on
Communication (ICC), pp. 1-6, May 2016.

©Copyright IEICE - APNOMS 2021 8

