

Docker Container Networking Based Apache Storm

and Flink Benchmark Test

Tao Liu

Dept. of Computer Technology

China University of Mining and

Technology, Beijing

Beijing, China

liutao4_3@163.com

Zhihong Yang

Dept. of Computer Technology

China University of Geosciences,

Beijing

Beijing, China

zhihongyang@cugb.edu.cn

Yuzhong Sun

Dept. of Computer Science

Institute of Computing Technology,

Chinese Academy of Sciences

Beijing, China

yuzhongsun@ict.ac.cn

Abstract—Many distributed stream computing engines have

emerged to handle big data, and they can be deployed in cloud

environments consisting of native networks or container

networks. Most of the benchmark research on stream

computing engines are carried out under the native network,

and the research on the impact on container network on stream

computing engines is currently inadequate. However, the use of

container network will inevitably lead to performance

degradation, which is the disadvantage of all virtual networks.

In this work, we build Apache Storm and Apache Flink, which

are Streaming Computation Engines in container network and

native network environments and conduct performance

measurements through experiments processing textual data to

verify how much performance decreases in container network.

Experiments show that the throughput in a container network

environment is 1%-5% lower and CPU utilization is 11%-18%

lower than in a local network environment.

Keywords—Container Network, Apache Storm, Apache

Flink, Streaming Computation Engines, Benchmark Test.

I. INTRODUCTION

In recent years, emerging information technologies and
application methods such as the Internet of Things, mobile
Internet, social platforms, and advertising are rapidly
developing and evolving, resulting in a rapid increase in data
volume and pushing human society into the era of big data. In
the context of big data, the scale of streaming data continues
to increase. In order to process the ever-increasing streaming
data, a series of streaming computing engines have emerged.
There are several representative stream computing engines
including Apache Spark [1], Apache Storm [2] and Apache
Flink [3]. These technologies are widely used in companies
such as Yahoo, Twitter, and Alibaba. In particular, Apache
Flink has gradually become the most popular big data
processing technology due to its simple code, integrated flow
and batch features, and rich ecology.

Distributed systems such as streaming computing engines
are scalable and can be configured on multiple servers.
However, as the number of servers in use grows it becomes
increasingly difficult to configure distributed systems. To
solve this problem, distributed environments can be easily
built using Docker [4], and the key to containers
communicating with each other is container network [5].
Since virtualization systems like Docker suffer from
performance degradation, some developers configure
distributed systems directly in their local environment instead
of using Docker.

However, researchers have considered only two cases,
native network and single container [6, 7], and ignored
container network. in this paper, we build a system for
processing textual data onto Apache Storm and Apache Flink,
which are streaming data processing systems, and examine the

extent of performance degradation through benchmarking
experiments in both the native network and container network
environments.

II. RELATED WORKS

A. Docker

As shown in Figure 1, specific examples of KVM and
Docker are used to demonstrate the differences between
traditional and emerging virtualization systems. Unlike
traditional KVM virtualization systems that require a KVM-
based hypervisor and guest OS installed on top of the Host OS
to achieve complete hardware isolation, Docker containers
only need to drive the Docker engine on top of the Host OS to
build an isolated execution environment. In other words,
Docker virtualization system does not need to install Guest OS
separately on top of Docker engine, but only needs to install
some code libraries and programs to share hardware resources
with the host and create an isolated execution environment. So,
developers use Docker to package application software and
the system tools, system dependencies and runtime tools
required by the application software in a read-only
hierarchical image, and deploy the application of the image.

In the last decade, virtualization systems have been widely
used in large data centers, embedded systems and personal
computers. A comparative study of multiple virtualization
systems is being conducted to validate the performance
benefits of Docker by describing the differences between
traditional and emerging virtualization systems as described
above [8, 9, 10].

App 1

Guest OS

Virtual machine

App n

Guest OS

 Hypervisor

Host OS

Hardware

Container

App 1

bins/libs

Docker Engine

Host OS

Hardware

Container

App n

bins/libs

KVM

Virtual machine

Fig. 1. KVM and Docker Architecture

B. Container Network

The key to building a container cluster is container
network, and the use of container network is to solve the
problem of communication between containers. At present,
Docker official website and open-source community have
proposed many solutions to solve the container in the case of
container isolation from mutual communication. Among them,
Swarm Overlay is Docker's native solution for container
communication, which has the advantages of simple

©Copyright IEICE - APNOMS 2021 49

configuration and its potential application value is very large
[5].

As shown in Figure 2, this is the network structure of
Overlay. Overlay needs to add K-V storage (Redis, Consul,
Ectd, etc.) as the storage system for data such as IPs and ports,
and then get the network configuration information from this
storage system to ensure that the container clusters are on the
same network segment.

10.0.2.0/24

consul

container container

eth0

docker

eth0

docker

host 1 host n

internet

Fig. 2. Overlay Network Architecture

C. Apache Storm and Apache Flink

Apache Storm and Apache Flink are both open sources,
distributed and memory-based stream computing engines. As
shown in Figure 3, they both uses directed acyclic graph
(DAG) as the computational model, which consists of three
phases: pulling data, transforming data, and storing
computational results. Apache Storm is programmed in a
DAG-oriented structure while Apache Flink is programmed in
a data-oriented way.

The computational model of Apache Storm consists of
Spout and Bolt, where Spout reads a stream of data from the
outside, which consists of a continuous stream of Tuple, Bolt
receives the stream and processes it, and finally delivers the
result to the storage system or to the next module of the
business. As mentioned above, the series of tasks performed
by Spout, Bolt and Data Stream are defined as Topology,
which obviously uses DAG to represent the structure and logic
of Data Stream processing. Spout, Bolt and Data Flow
forwarding need to be defined by the developer, so Storm is
programmed for DAG structure.

Apache Flink is a stream computing engine that uses DAG
as the computational model and has the same computational
process as Storm, but unlike Storm, Flink abstracts many
operations and provides them to the user in the form of an API.
The user doesn't feel like he or she is building a DAG, and is
more focused on each step of the data flow. Specifically,
Storm requires developers to define each step of the operation
themselves, whereas Apache Flink directly uses functions
such as map, flatmap and keyby to complete data processing
tasks. So Flink is a data-oriented way of programming.

Input Data DB

Data Source Transformation

Storage

Fig. 3. Storm and Flink calculation model

III. BENCHMARK DESIGN

Two benchmark tests were implemented based on the
structural features of the Storm and Flink computational
models.

As shown in Figure 4, the first benchmark test is a CPU-
intensive linear computational model consisting of four
vertices. The tasks represented by each vertex are as follows:

1) The task numbered 1 pulls text data from Kafka.

2) The task number 2 cuts the string into words.

3) The task numbered 3 counts the number of each word.

4) The task numbered 4 puts the calculation results into
Redis.

Fig. 4. Linear calculation model

As shown in Figure 5, the first one is a Network-intensive
diamond-shaped computing model consisting of five vertices.
Each vertex represents a task as follows:

1) The task numbered 1 pulls text data from Kafka.

2) The tasks numbered 2, 3 and 4 splice the string with a
question mark character.

3) The task numbered 5 receives the data and passes it
directly to the next node without doing any processing.

4) The task numbered 6 puts the calculation results into
Redis.

Fig. 5. Diamond calculation model

IV. EXPERIMENTS AND RESULTS

In this section performance test are performed on the
Kafka-connected distributed data stream processing engine.
First, we deploy Apache Storm and Apache Flink directly on
three servers, then deploy these two stream computing engines
on the container network, and finally run the two benchmark
tests designed above separately.

©Copyright IEICE - APNOMS 2021 50

A. Experimental environment

As shown in Table 1, the experimental environment

consists of five servers, two of which deploy Kafka message

middleware and Redis database, and the remaining three

servers deploy stream computing engines in native network

and container network, respectively.

TABLE I. EXPERIMENT ENVIRONMENT

Server number
Configuration Information

Software Hardware

Node-1

Redis: 6.2.3

Docker: 20.10.5
OS: Centos7

CPU: Intel(R) Xeon(R)

CPU E5-2620 0 @

2.00GHz × 2
HDD: 7.6TB

RAM: 46GB

Node-2

Apache Kafka: 2.5.1

Docker: 20.10.5

OS: Centos7

CPU: Intel(R) Xeon(R)

CPU E5-2620 0 @

2.00GHz × 2

HDD: 7.4TB

RAM: 64GB

Node-3 Apache Storm: 2.2.0

Apache Flink: 1.12

Docker: 20.10.5

OS: Centos7

CPU: Intel(R) Xeon(R)

CPU E5-2620 0 @

2.00GHz × 2

HDD: 7.3TB

RAM: 46GB

Node-4

Node-5

B. Throughput and CPU Utilization

First, input about 40GB of textual data, and each
processing block is about 1.31MB, then the benchmark test is
run for 15 minutes to store the calculation results in the
database, test the CPU usage during the run, and finally count
the throughput.

As shown in Figure 6, the CPU-intensive benchmark test
has lower throughput in the container network environment
than in the native network environment, but the reduction is
insignificant. The results of this experiment also show that the
throughput of Flink is about 40% higher than that of Storm.
As shown in Figure 7, The average CPU resource utilization
of Storm with three service servers is about 50% higher than
that of Flink and the CPU utilization degradation in the
container network environment is low. In summary, Flink
performs better than Storm in this experiment.

Fig. 6. CPU-intensive calculation model

Fig. 7. Linear model CPU usage

As shown in Figure 8 below, the Network-intensive
benchmark has lower throughput in the container network
environment than in the native network environment, but the
difference is extremely small. However, the throughput of
Flink is tens of times higher than Storm, and the reason is
related to their scheduling algorithm. As shown in Figure 9
below, the CPU resource utilization in the container network
environment is lower than the throughput in the native
network environment, and the CPU resource utilization of
Storm is higher than that of Flink. In conclusion, the impact
on container network on Storm and Flink is minimal, and the
main performance loss is caused by the containers themselves.

Fig. 8. Network-intensive calculation model

Fig. 9. Diamond model CPU usage

V. CONCLUSION

In this paper, we build a container network, deploy Apache
Flink and Apache Storm on top of this platform, and use two
benchmarks to measure their performance in container
network and native network environments, respectively. The
two benchmarks represent CPU-intensive and network-
intensive, respectively, and the experiments show that Flink
outperforms Storm by 1%-5% lower throughput and 11%-18%
lower CPU usage in the container network environment
compared to the native network environment. in addition, the
experimental results show that the performance loss caused by
the containers themselves is considered much larger than that
of the container network. In future research, we will build
different types of container networks and explore the
adaptability of stream computing engines to various container
networks.

ACKNOWLEDGMENT

This work was partially supported by the Institute of
Computing Technology, Chinese Academy of Sciences and
supported by the National Key Research Program of the
Networked Operating System for Cloud Computing (No.
2016YFB1000505).

REFERENCES

[1] M. Zaharia, et al., "Spark: Cluster computing with working sets," In
Proc. of the 2nd USENIX Conference on Hot Topics in Cloud
Computing, p. 10, June. 2010.

©Copyright IEICE - APNOMS 2021 51

[2] A. Toshniwal, et al., "Storm@ Twitter," In Proc. SIGMOD of the
International Conference on Management of Data, ACM, pp. 147- 156,
June. 2014.

[3] P. Carbone, et al., "Apache flink: Stream and batch processing in a
single engine," Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, Vol. 36, No. 4, pp. 28-38, 2015.

[4] D. Merkel, "Docker: lightweight linux containers for consistent
development and deployment," Linux Journal, Vol. 2014, No. 239,
2014.

[5] Zeng H, et al., "Measurement and evaluation for docker container
networking," In Proc. of 9th International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery, IEEE, pp.
105- 108, Oct. 2017.

[6] Chintapalli S, et al., "Benchmarking streaming computation engines:
Storm, flink and spark streaming," In Proc. of IEEE 30th IEEE
International Parallel and Distributed Processing Symposium
Workshops, IEEE, pp. 1789-1792, May. 2016.

[7] Bang J, Choi M J, "Docker environment based Apache Storm and
Spark Benchmark Test," In Proc. of 21th Asia-Pacific Network
Operations and Management Symposium, IEEE, pp. 322-325, Sept.
2020.

[8] Mbongue J M, Kwadjo D T, Bobda C, "Performance Exploration of
Virtualization Systems," arXiv preprint arXiv:2103.07092, 2021.

[9] C. Yong, L. Ga-Won, and H. Eui-Nam, "Proposal, “Proposal of
Container- Based HPC Structures and Performance Ana lysis, " Journal
of Information Processing Systems, Vol. 14, No. 6, pp. 1398-1404, Dec.
2018.

[10] M. T. Chung, N. Quang-Hung, M. Nguyen and N. Thoai, "Using
Docker in high performance computing applications, " In Proc. of IEEE
6th International Conference on Communications and Electronics,
IEEE, pp. 52-57, Jul. 2016.

©Copyright IEICE - APNOMS 2021 52

