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Abstract— Inverse problems have always been a major subject 

in engineering science. There are still no standard solution 

algorithms working reliably without adding considerable 

amount of expert knowledge. This class of problems is often 

described by integral equations. These equations can be 

interpreted as a convolution of a source with the pulse response 

of a linear time invariant system. This suggests that it is possible 

to solve them in spectral domain. As reconstructing the sources 

of a near field scan data constitutes an inverse problem, the aim 

of this paper is to show an algorithm to determine an 

approximate solution. This involves the usage of the spatial 

Fourier transform and the corresponding impulse response 

functions in spectral domain.  

I. INTRODUCTION 

Estimating the far field of radiating devices by 

determination of equivalent sources is a well described 

problem [1]. However, reconstructing the physical sources 

constitutes an inverse problem. Often these problems can only 

be solved for simple geometrical structures due to their ill 

posed nature. A way to solve them is applying regularized 

Least Squares algorithms [2]. But these algorithms lack 

numerical stability. Therefore this paper tries to introduce a 

method without application of regularized Least Squares-

Algorithms (LSQ) based on [3] but suitable for two-

dimensional structures on a grounded substrate. Using this 

method, Calculation in spectral domain and the usage of Fast 

Fourier Transformation avoids an inverse convolution in the 

space domain.  

In chapter II the basic principles of the method will be 

explained. This section gives a quick overview over the basic 

integral equation, the point spread functions of a stripline on a 

grounded dielectric substrate and the application of the Fast 

Fourier Transform to a near field scan data. In the next section 

this principle will be evaluated for two simple structures. The 

results will be compared to those of the Finite Difference 

Time Domain (FDTD) tool Microwave Studio by CST.  

 

II. BASICS 

A.  Fundamental Principle  

The calculation of the magnetic field of a two dimensional 

current distribution Kν is based on the superposition principle. 

The current is considered as a sum of dipoles and its field is 

described by the sum of the individual fields. The following 

integral expresses this principle.   
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The vector 
pr


 denotes the observation point and 
qr


 

denotes the source point. Gµν is called Green’s function of the 

system. It links the ν-component of a current element to the µ-

component of the magnetic field. The structure of the integral 

above can be identified with the structure of a convolution 

integral. One can see that (1) is in fact the convolution of the 

current distribution 
K  with Green’s Function of the 

considered source. This Green’s Function represents the pulse 

response of the underlying linear time invariant (LTI) system 

which is defined by the materials around the current element. 

As commonly known convolution in spatial domain 

corresponds to multiplication in spectral domain. 
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The tilde symbol in (2) denotes the Fourier transform of 

the corresponding function and kμ and kν denote the 

propagation constants in μ and ν direction. This correlation 

can be used to solve the inverse problem of source 

reconstruction. For this it is necessary to determine the 

system’s point spread function in Fourier domain as well as 

the Fourier transform of the near field data.  
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B. The Green’s Function of dieletric substrate in spectral 

domain 

The calculation of the point spread functions of a 

dielectric substrate with εr > 1 and μr = 1 is given in [4]. Thus 

the following chapter will provide just a quick overview 

concerning this determination. It yields the spectral Green’s 

Function of an arrangement of infinite extent in x and y 

direction with a dielectric material from z = 0 to z = hSubs, a 

ground plane at z = 0 and air above z = hSubs. In the following 

the dielectric region will be called region 1 and the air region 

will be called region 2. Starting point of the calculation is the 

set of Maxwell equations with time harmonic variation 

assumed and suppressed.  

HμE 0j  

EH r 0j   

(3) 

After evaluating the boundary conditions at the interface 

these equations yield the desired relations.  
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(5) 

For x-directed currents interchanging x and y in (4) and 

(5) yields the corresponding point spread functions.  

 

C. Fourier Transform of Field Data 

The Fast Fourier Transform (FFT) is the weapon of 

choice for transforming numerical field data into the spectral 

domain. Nevertheless some postprocessing steps have to be 

made to yield the approximate continuous Fourier transform 

instead of a discrete line spectrum. To demonstrate this 

principle the following figures are used. Consider a general, 

dimensionless rectangular signal as shown in Fig. 1. The 

input for the FFT is the single pulse around x = 0. The FFT 

interprets this input as a periodic signal which is denoted by 

the dashed rectangles. As commonly known, periodic signals 

have a discontinuous spectrum. But here the continuous 

spectrum of the single pulse is needed. So the signal of Fig. 1 

must be multiplied with a rectangular window. As the FFT 

interprets every input as one period of a periodic signal, the 

data windowing is not possible in spatial domain. However a 

multiplication in the spatial domain is equivalent to a 

convolution in the spectral domain. 
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Fig. 1. Rectangular Signal 
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Fig. 2. Continuous spectrum 

Thus convolving the line spectrum with the analytically 

calculated Fourier transform of the window function (a 

simple sin cardinalis function) yields the continuous spectrum 

of the single pulse around x = 0 as shown in Fig. 2. This 

principle holds for the twodimensional Fourier transformation 

as well. Thus it can be used for the calculation of the spectral 

distribution of twodimensional near field data.  

 

III. EVALUATION FOR SIMPLE GEOMETRIES 

The basic principles of chapter II will now be used to 

calculate the current density in simple stripline structures from 

their near field data. The data are generated by the FDTD tool 

CST Microwave Studio. Using a simulation tool allows to 

compare the current densities calculated by FDTD and the 

proposed approach.  

 

A. Stripline Patch 

The considered structure is a simple stripline patch on a 

lossless, grounded substrate with a relative permittivity 9.8. It 

is connected to an AC source at 3 GHz. With respect to the 

wavelength it cannot be considered electrically small. The 

FDTD tool allows determining the current in conductors either  
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Fig. 3. Magnetic field above strip, real part of x-component 

by evaluating the tangential magnetic field component or the 

losses. The results of these two approaches will be used for 

verification. The observed near field is exported to Matlab. 

Fig. 3 shows the x-component of the magnetic field above the 

strip. This data is transformed to the spectral domain and 

convolved with the transform of a rectangular window 

function to obtain the continuous spectrum of the single pulse 

in Fig. 3. Now that the spectral distribution is known Green’s 

Function of the y-directed current has to be taken into account. 

The assumption of an exclusively y-directed current density 

holds for the given geometry. Thus it is sufficient just to 

consider Green’s Function Gxy. It describes the x-component 

of the magnetic field caused by the y-component of the 

current. Problems caused by the inverse nature of the 

calculation become visible then. The larger the term 

2
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x kkβ   (6) 

grows, the more Gxy tends to zero. If the Fourier transform of 

the near field data were known analytically it would tend 

towards zero just alike. But as the data is noisy, the signal to 

noise ratio decreases with a falling signal level. The division 

by small terms in 
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amplifies the noise and causes large errors for high 

propagation constants. Thus a sufficient reconstruction of the 

source spectrum demands a window function to be applied to 

the field data. Here the Tukey window [5] with α = 0.3 was 

chosen. With this filtering applied, equation (7) delivers 

reasonable results. The inverse Fourier transform of (7) yields 

the current density on the stripline as shown in Fig. 4. The 

integral of the current density along the x-direction delivers 

the total current. In Fig. 5 it is compared to the results of the 

FDTD tool. The evaluation of the losses in the conducting 

material, the integral of the magnetic field and the proposed 

calculation method show sufficient accordance. 

 

Fig. 4. Current density, y-component 
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Fig. 5. Comparison of loss evaluation, current monitors and proposed 

calculation method 

The largest difference can be seen at the ends of the strip 

around the feed lines. There, x- and z-directed currents occur 

and compromise the assumption of exclusively y-directed 

currents.  

B. Angled Stripline  

The case of a unidirectional current is very academic. 

There are currents in both transversal directions in planar 

conducting geometries. Therefore, the x- and the y-component 

of the magnetic field are caused by both transversal 

components of the current distribution.  
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Four different point spread functions have to be taken into 

account and thus a 2x2 linear equation system has to be solved 

for each point in the kxky–plane. The point spread functions in 

(8) feature the same behavior for growing propagation 

constants. So a window function has to be applied to the data 

again. The relation (8) is applied the angled stripline in Fig. 6. 

The frequency of the AC source is again 3 GHz and thus the 

structure cannot be considered electrically small with respect 
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Fig. 6. Angled stripline 

 

Fig. 7. Hx – component, real part 

to its dimensions. The x-component of the magnetic field 

above this conducting geometry is shown in Fig. 7. The field 

data are Fourier transformed and applied to the equation 

system (8). Inversion yields the Fourier transform of the x- 

and y-component of the current distribution. Evaluating the 

inverse Fourier transform yields the current distribution in 

spatial domain. Fig. 8 shows the y-directed current distribution 

in the y-directed part of the angled stripline. The comparison 

to the result of the FDTD tool shows sufficient accordance of 

the two different methods. In Fig. 9 the integral of the current 

density in x-direction is shown. The continuous line 

constitutes the result of the FDTD tool whereas the dashed 

line is the result of the introduced method. They show 

sufficient accordance. The same holds for the x-directed 

current densities. 

IV. CONCLUSION 

This paper focuses on solving an inverse problem in the 

spectral domain. It tries to avoid the inverse convolution in the 

space domain which is either difficult or in most cases not 

possible at all. By applying modern numerical tools like FFT 

the Fourier transform of the field data can be obtained in 

reasonable time.  

 

Fig. 8. Ky – component, FDTD and proposed method 
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Fig. 9. Iy – component, FDTD and proposed method 

This allows the usage of spectral domain Green’s functions. 

So a sufficient approximation of the sources’ spectral 

distribution can be achieved. The inverse transform then 

yields the sources in the spatial domain. Although inevitable 

numerical difficulties occur, the results are sufficient to predict 

the currents in the examined structures. 
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