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Abstract: In this paper, we study an effect of channel
estimation error on time-varying V-BLAST system. A
first-order auto regressive (AR) is introduced to model
the time evolution characteristic. The receiver can ob-
tain the current channel information by using a pilot
symbol. The estimation accuracy depends on amount of
pilot symbols. Based on the received signal, the receiver
uses an estimated channel matrix to detect the transmit
symbol where Maximum Likelihood (ML), Zero-Forcing
(ZF) and Minimum Mean Square Error (MMSE) are ap-
plied. For given total amount of pilot symbol and inter-
ested time period, we propose to divide all channels into
equal intervals or groups, which each group uses the same
estimated channel. We also specify an optimal number
of groups and show that the optimal number of groups
mainly depends on time correlation parameter and train-
ing budget. Numerical results show that the system can
achieve the performance closest to perfect channel esti-
mation when operating on a suitable estimation interval.

1. Introduction

Using multiple antennas at both the transmitter
and the receiver provides a multiple-input multiple-out
(MIMO) propagation channel. Many works in the lit-
eratures have shown that communicating with multiple
antennas system can achieve much higher spectral effi-
ciencies than single antenna system in fading environ-
ments [1, see references therein]. Vertical Bell-Labs Lay-
ered Space-Time (V-BLAST) is an approach to utilizes
multiple antenna systems for high data rate transmis-
sion. With V-BLAST system, data stream is encoded
and transmitted independently for each transmit an-
tenna [2]. Thus, the system capacity increases linearly
with number of transmit antennas.

To decode the transmitted data in V-BLAST system,
the receiver needs to know the instantaneous channel in-
formation. Practically, the receiver can estimate the cur-
rent channel state by using training symbols [3]. Then,
the receiver uses the estimated channel to detect the
transmitted data. Performance of the system depends on
the accuracy of channel detection, which relies on train-
ing symbols [3]. Effect of channel estimation error on
V-BLAST system was studied in [4]. Actually, channel
varies with time and its information is correlated over
time. Correlation between time slots can be described

by a first-order auto regressive model [5]. For a time-
correlated channel, the receiver can use the estimated
channel from previous time slot to detect the transmitted
data in current time slot. Hence, the training symbols
can be saved by this strategy. This motivates us to study
an effect of channel estimation error on V-BLAST time-
correlated system and to find a method to manage the
number of training symbols, which consume the channel
bandwidth. Utilization of time correlation in multiple
antennas systems was investigated in [6].

In this paper, we study an effect of channel estimation
error on the performance of V-BLAST system with the
Maximum Likelihood (ML), Zero-Forcing (ZF) and Min-
imum Mean Square Error (MMSE) in time-correlated
fading channels. To reduce the number of total pilot
symbols required in an interested time period, we pro-
pose to divide channels into intervals or groups. The
channel which is estimated from the first time slot is
used to detect the transmitted symbols for all time slots
in each group. For a given training budget, we try to find
the optimal number of groups which minimizes average
bit error rate (BER). We show by simulation that the
optimal number of groups varies with time correlation
coefficient and training budget. Furthermore, we also
show that operating on the suitable number of groups
can significantly increase the system performance.

This paper is organized as follows. Channel model,
detection algorithms and model of estimation error are
introduced in Section 2.. In Section 3, we propose an
idea to manage the training budget and determine the
optimal number of groups. Numerical results are shown
and discussed in Section 4.. Some conclusions are given
in Section 5..

2. Time-Varying V-BLAST

We consider a time-slotted frame structure multiple
antennas system with MT transmit antennas and MR

receive antennas. Assuming that H(n) = [hi,j(n)] is an
MR×MT channel matrix for the nth time slot, whose el-
ement hi,j(n) is the channel coefficient between the jth
transmit and the ith receive antennas. For ideal scat-
tering and Rayleigh fading, hi,j(n) is independent and
complex Gaussian distributed with zero mean and unit
variance. We also assume that adjacent antennas in an-
tenna arrays at both the transmitter and receiver are
placed sufficiently far apart so that elements of H(n)
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are independent, for all n. The channel matrix H(n)
is assumed to be static within the nth time slot. To
describe the temporal correlation between the nth and
(n−1)th time slots, we apply a first-order auto regressive
(AR) model as follows

H(n) = αH(n− 1) +
√

1− α2u(n) (1)

where u(n) is an MR ×MT noise matrix with indepen-
dent zero-mean and unit-variance complex Gaussian en-
tries and α, (0 ≤ α ≤ 1), is a correlation coefficient
which depends on doppler frequency. With the Jakes’s
model [7], α = J0(2πfd∆n) where J0(·) is the zeroth or-
der Bessel function of the first kind, fd is the maximum
Doppler frequency and ∆n is the time interval between
consecutive channel blocks. We note that the correla-
tion parameter is assumed to be perfectly available at
both the transmitter and the receiver. Reference [5] has
shown that the model in (1) can be used to predict the
time evolution very well.

We assume that the parallel data streams are simul-
taneously transmitted through multiple antennas in the
same frequency band. At the receiver, for the nth time
slot, the MR × 1 received signal is given by

r(n) = H(n)x(n) + z(n) (2)

where x(n) = [x1(n), ..., xMT
(n)]T is a transmit vector

which each element has zero mean and unit variance, and
z(n) is MR×1 AWGN vector with zero mean and covari-
ance σ2

zI and I is an identity matrix. By observing (2)
we see that each receive antenna receives a combination
of all faded symbols. To detect the transmitted vector
x, we consider three detection algorithms as follows.

2.1 Maximum Likelihood (ML) Detection

The first detector we will consider is the Maximum
Likelihood detector which is optimal in the probabilis-
tic sense. With ML algorithm, the received signal is
compared with all possible transmitted vectors which are
multiplied by channel matrix H(n). The candidate vec-
tor with the minimum euclidean distance to the received
signal is considered to be the estimated signal as follows

x̂(n) = arg
xi∈X min ‖r(n)−H(n)xi‖

2 (3)

where X = {x1,x2, ...,x2MT } is a set of all candidate
vectors. As mentioned above, an ML algorithm offers
the optimum detector. To perform the calculation in (3),
the receiver needs to search for all possible choices in the
set X . Thus, the complexity depends on the number
of members in X and increases exponentially with the
number of transmit antennas.

2.2 Zero Forcing (ZF) Detection

The problem in search complexity of ML algorithm
can be avoided by employing a linear receiver. The first
linear receiver we are interested in is Zero-Forcing (ZF).
With ZF algorithm, noises are treated to be zero and

then the transmitted data streams are separated and de-
coded independently. The detected symbol can be found
by

x̂(n) =
(

H(n)HH(n)
)−1

H(n)Hr (4)

where (·)H denotes a hermitian transpose operation. We
note that the ZF decoder works well in high signal-to-
noise ratio (SNR) regime. However, when the SNR de-
creases, the performance of the ZF detector drastically
degrades. This is because this kind of detectors essen-
tially ignores the presence of noises.

2.3 Minimum Mean Square Error (MMSE) De-
tection

To improve the performance of the Zero-Forcing al-
gorithm, noise components should be taken into account
in the detection process. With the MMSE receiver, the
detected symbol is given by

x̂(n) =
(

H(n)HH(n) + σ2
zI

)−1
H(n)Hr. (5)

The solution in (5) can be obtained by using the orthog-
onality principle. It should be noted that the perfor-
mance of the MMSE receiver approaches to that of the
Zero-Forcing receiver as SNR increases.

To detect the transmitted data, the receiver needs to
know the current channel matrix H(n). Practically, the
receiver can obtain the knowledge of channel via pilot
symbols. We assume that at the beginning of each time
slot, T pilot symbols, which are known by both the trans-
mitter and the receiver, are transmitted. The receiver
uses these pilot symbols to estimate the current channel.
With the assumption that the elements of H(n) are in-
dependent complex Gaussian random variables with zero
mean and unit variance hence, we have

H(n) = Ĥ(n) +w(n) (6)

where the estimated channel Ĥ(n) and the error ma-
trix w(n) are independent. Assuming the elements of
w(n) are independent complex Gaussian random vari-
ables with zero mean and variance σ2

w, as a result, the

elements of Ĥ(n) have zero mean and variance (1−σ2
w).

Reference [3] has shown that, for the MMSE estimator,
the relation between amount of training symbols T and
σ2
w is given by

σ2
w =

1

1 + ρT
(7)

where ρ is background signal-to-noise ratio (SNR) of the
system which is uniformly allocated to each time slot.
This is very clear to say that the estimation error will
decrease if we increase the training budget ρ or T .

In the real system, the receiver uses an estimated
channel matrix Ĥ(n) to detect the transmitted data.
Hence, for ML algorithm, solution of detected data be-
comes

x̂(n) = arg
xi∈X min ‖r(n)− Ĥ(n)xi‖

2, (8)
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for ZF the solution is given by

x̂(n) =
(

Ĥ(n)HĤ(n)
)−1

Ĥ(n)Hr, (9)

and for MMSE

x̂(n) =
(

Ĥ(n)HĤ(n) + σ2
zI

)−1

Ĥ(n)Hr. (10)

We note that the performance of all detection algorithms
depends on the accuracy of estimation in (6).

3. Channel Estimation Strategy

Given a system with N time slots and T pilot symbols
with constraint T ≤ N , we propose that the transmitter
divides all N time slots into G groups and each group
contains M = N/G time slots. At the beginning of each
group, the transmitter sends T̄ = T/G pilot symbols.
The variance of an estimation error can be computed by
replacing T with T̄ into (7). The receiver estimates the
channel matrix and uses it to detect the transmitted data
for all M time slots in the group. With the proposed al-
gorithm, the estimated channel matrix is most matched
to the first time slot and regressively matched to subse-
quence time slots. Suppose that N is fixed. Consider
a system with large G while M is small, the channels
are estimated very often but with large estimation error.
Oppositely, the estimated channel is accurate in the first
time slot of the group but may be outdated in subse-
quence time slots for the system with small G and large
M . On the other hand we can say that the performance
of the system is a trade-off between training symbols
and number of groups G, and hence there exists optimal
number of groups for a given training budget.

In this work, we use the bit error rate (BER) to mea-
sure the system performance. Let BERg,m be the bit
error rate for the mth time slot of the gth group, the av-
eraged bit error rate over all time slots can be determined
as follows

¯BER =
1

N

G
∑

g=1

M
∑

m=1

BERg,m. (11)

We would like to determine the optimal number of groups
that minimizes the average bit error rate as follows

G∗ = arg min
1≤G≤N

¯BER. (12)

We note that the solution in (12) can be found by an
intensive Mote-Carlo simulation. In the next section, we
will show that the optimal number of group G∗ is very
significant to improve the system performance.

4. Numerical Results

To illustrate and obtain some insight about the pro-
posed method, we provide an intensive Mote-Carlo sim-
ulation over 1,000,000 channel and noise realizations. In
Fig. 1, we show the bit error rate with number of groups
G for 2×2 V-BLAST channels with 128 time slots, train-
ing budget is 1 symbol per time slot and SNR = 10 dB.

Different plot corresponds to different correlation param-
eter. In the figure, we see that there exists an optimal
number of groups for each correlation model. For time-
invariant channel (α = 1), using the first time slot esti-
mated channel over all time periods provides 75% lower
BER than that for training all time slot with 1 symbol.
However, uniformly channel estimation is suitable in fast
fading channel (α = 0.7). For slow fading channel, se-
lecting G = 32 gives the minimum BER.
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Figure 1. The averaged bit error rates from difference
channel models are plotted with number of groups
G with zero-forcing detection for N = T = 128,
MT = MR = 2 and SNR = 10 dB.

Figs. 2 and 3 show the graphs of the optimal number
of group G∗ as functions of the time correlation param-
eter and of the SNR, respectively. In the both figures,
the system parameters are set as N = 128, T = 32,
and MT = MR = 2. In Fig. 2, we see that G∗ de-
creases as correlation between time slots increases for
every interested SNR. This implies that the estimation
process should be occurred frequently in fast fading chan-
nel. However, as the channel becomes more static, the
better strategy is to lessen the frequency of estimation
but with longer training symbol.

Fig. 3 shows the optimal number of groups G∗ with
SNR. We can observe that, for sufficiently high SNR,
estimating channel for all time slots is possible. However,
using the optimal number of groups is more essential
in low SNR regime, since it significantly improves the
system performance.

In Fig. 4, we compare the systems operated with opti-
mal number of groupsG∗ with perfect channel estimation
for ML, ZF and MMSE detectors. We note that G∗ can
be obtained from (12). As expected, the ML algorithm
provides the best performance while the ZF algorithm
is comparable to the MMSE algorithm in a high SNR
regime. In this figure, we can see that operating on G∗

provides performance closest to the ideal channel estima-
tion. Thus, the optimal G∗ is very significant to improve
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Figure 2. Optimal number of groups G∗ is shown with
time correlation parameter α with zero-forcing de-
tection for N = 128, T = 32 and MT = MR = 2.
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Figure 3. Optimal number of groups G∗ is shown with
SNR with zero-forcing detection for N = 128, T =
32 and MT = MR = 2.

the system performance in the scenario, which training
budget is very limited.

5. Conclusions

We have studied an effect of channel estimation error
on the performance of V-BLAST time-correlated chan-
nels. The system performance is degraded due to an
estimation error especially in case of very limited train-
ing budget. Furthermore, we also proposed the method
to manage the training budget and determined the op-
timal number of groups G∗ which is mainly depended
on time correlation parameter α and training budget.
In the numerical example, a system can achieve perfor-
mance closet to the ideal channel estimation when oper-
ating with the suitable number of groups, especially for
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Figure 4. Comparison between optimal G∗ and ideal
channel estimation is shown for ML, ZF and MMSE
detections with N = T = 128 and MT = MR = 2.

the ZF and MMSE detectors.
In the scope of this work, the system performance is

only evaluated by numerical simulation. To obtain more
insight about the system, we need to derive a closed-form
expression of the average BER. This is very interesting
and will be our work in the future.

References

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian
channels,” European Trans. on Telecommun., vol. 10,
pp. 585–595, Nov. 1999.

[2] D. Shiu and J. Kahn, “Layered space-time codes for
wireless communications using multiple transmit an-
tennas,” in Proc. IEEE International Conference on
Communications (ICC), Jun. 1999, pp. 1–5.

[3] A. Vakili, M. Sharif, and B. Hassibi, “The effect of
channel estimation error on the throughput of broad-
cast channels,” in in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), Toulouse, France, May 2006, pp. 1–4.

[4] S. A. Joshi, T. S. Rukmini, and H. M. Mahesh,
“Analysis of V-BLAST techniques for MIMO wireless
channels with different modulation techniques using
linear and non linear detection,” International Jour-
nal of Computer Science Issues, vol. 1, no. 1, pp.
74–79, Mar. 2011.

[5] Z.Liu, X.Ma, and G.B.Giannakis, “Spacetime cod-
ing and kalman ltering for time-selective fading chan-
nels,” IEEE Trans. Commun., vol. 52, no. 2, pp. 183–
186, Feb. 2012.

[6] O. Mehanna and N. D. Sidiropoulos, “Channel track-
ing and transmit beamforming with frugal feedback,”
IEEE Trans. Signal Process., vol. 62, no. 24, pp.
6402–6413, Dec. 2014.

[7] J.G.Proakis,Digital Communication. NewYork, NY,
USA: McGraw-Hill, 2000.

470


