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Abstract—Spectrum sculpting (SS) is a precoding scheme for
sidelobe suppression of orthogonal frequency division multiplex-
ing (OFDM) signals and can shape a spectrum with deep notches
at chosen frequencies. However, the SS method will degrade
the error rate as the number of notched frequencies increases.
Orthogonal precoding of the SS has both a notched spectrum
and an ideal error rate, but the computational complexity of
the precoder matrix is very large. This paper proposes a matrix
decomposition of the precoder matrix of the orthogonal precoding
to reduce the computational complexity. Numerical experiments
show that the proposed method can drastically reduce the
computational complexity.

I. INTRODUCTION

The advantages of fast data transmission and robustness
against multipath fading have led to orthogonal frequency divi-
sion multiplexing (OFDM) being adopted in several telecom-
munications technologies. One of the drawbacks associated
with the design of OFDM transmitters is that high out-of-band
radiation is generated by the high sidelobes of the OFDM sig-
nal. A critical issue concerning OFDM-based cognitive radio
systems is that unwanted in-band and out-of-band radiation
interferes with the adjacent bands. Various methods of sidelobe
suppression have been proposed [1]–[7].

Spectrum sculpting (SS) [6] is a precoding scheme for
sidelobe suppression that can shape a spectrum with deep
notches at chosen frequencies. However, the SS method will
degrade the error rate as the number of notched frequencies
increases. Orthogonal precoding of the SS [7] has both a
notched spectrum and an ideal error rate; however, it requires
a very large computational complexity for precoding and
decoding.

To reduce the computational complexity, this paper proposes
a matrix decomposition of the precoder in the orthogonal
precoding. Numerical experiments show that the proposed
method can drastically reduce the computational complexity.

II. ORTHOGONAL PRECODING OF SPECTRUM SCULPTING

In this paper, the OFDM signal is written as

s(t) =

∞∑
i=0

si(t− iT ), (1)

where T = Ts+Tg, Ts is the OFDM symbol duration and Tg

is the guard interval length. The i-th OFDM symbol si(t) is

written as

si(t) =
∑
k∈K

d̄k,ipk(t) = pT (t)d̄i, (2)

where
pk(t) = ej2π

k
Ts

tI(t), (3)

p(t) = [pk0(t), · · · , pkK−1
(t)]T , (4)

the indicator function I(t) = 1 for −Tg ≤ t < Ts and I(t) = 0
elsewhere, the K × 1 vector d̄i = [d̄0,i, · · · , d̄K−1,i]

T ∈
CK is the result of precoding the D × 1 vector di =
[d0,i, · · · , dD−1,i]

T containing D information symbols in
some finite symbol constellation, K (≥ D) is the number
of subcarriers, and K = {k0, · · · , kK−1} are the subcarrier
indices. The Fourier transform of (2) is

Si(f) =
∑
k∈K

d̄k,iak(t) = aT (t)d̄i, (5)

where

ak(f) = Te−jπ(Ts−Tg)(f− k
Ts

)sinc(πT (f − k

Ts
)) (6)

is the Fourier transform of pk(f),

a(f) = [ak0(f), · · · , akK−1(f)]
T (7)

and the cardinal sine is defined as sinc(x) = sin(x)/x. To
render the power spectrum of s(t) zero at the M (� K)
chosen frequencies in M = {f0, · · · , fM−1}, the SS scheme
[6] satisfies the constraints

Si(fm) = 0, m = 0, 1, · · · ,M − 1. (8)

For (5), the constraints (8) can be cast in matrix form such as

Ad̄i = 0, (9)

where
A = [a(f0),a(f1), · · · ,a(fM−1)]

T
. (10)

Applying the orthogonal precoding [7] with D = K −M ,
the solution of (9) is determined as

d̄i = Godi, (11)
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where

Go = V

[
OK×D

ID

]
= [vM vM+1 . . . vK−1], (12)

vM ,vM+1, · · · ,vK−1 are the last D = K−M columns of a
K ×K unitary matrix V = [v0 v1 . . . vK−1] obtained from
the singular-value decomposition (SVD) that factorizes A as

A = UΣVH , (13)

U is an M ×M unitary matrix, and Σ is a diagonal M ×K
matrix containing the singular values of A in non-increasing
order along its diagonal. Because the precoder (12) satisfies
AGo = O, the precoding (11) satisfies the constraint (9) (see
Appendix).

The receiver performs the decoding that inverts the trans-
mitter precoding (11) as

ri = GH
o r̃i, (14)

where r̃i is the i-th received OFDM symbol after the channel
equalization. This decoding provides ri = di in the noiseless
condition since Go is unitary (GH

o Go = ID).
Ref. [7] shows that the orthogonal precoding has the ideal

error rate performance and a sidelobe suppression performance
identical to that of the precoding [6]. However, the precoding
(11) and decoding (14) each require KD = K(K−M) ' K2

multiplications. These are very large and thus must be reduced.

III. ANALYSIS AND PROPOSED METHOD

This paper proposes a matrix decomposition of the orthog-
onal precoder Go to reduce the computational complexity in
the orthogonal precoding.

Firstly, we consider the SVD of V − IK such that

V − IK = XYZH , (15)

where X = [x0 x1 . . . xK−1] and Z = [z0 z1 . . . zK−1],
are K ×K unitary matrices, Y is a diagonal K ×K matrix
containing the singular values of V − IK in non-increasing
order along its diagonal, expressed as

Y = diag (σ0, σ1, · · · , σK−1) , (16)

and σ0 ≥ σ1 ≥ · · · ≥ σK−1 are the singular values of V−IK .
We analyzed Y expressing the singular values V−IK under

the conditions in [7]. Figure 1 shows the first 100 diagonal
elements of Y, that is, the singular values σ0, · · · , σ99. The re-
sults show that almost all diagonal elements can be considered
as zeros, except for the first few values. The number of non-
zero diagonal elements L is found to be 2M from these results.
Although there are no guarantees that L is always equal to 2M
or much smaller than K, we estimate that L is restricted by
M . We have actually verified at least that L = 2M � K is
satisfied in all the cases described in [6] and [7].

Assuming that the L (≤ rank{Y}) singular values are not
equal to zero, we can approximate the matrix V− IK by the
Eckart–Young theorem, i.e.,

V − IK ' XỸZH , (17)
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(a) M = 8 (M = {±6100±1,±5100±1} kHz) and K = 600
(K = {−300, · · · ,−1} ∪ {1, · · · , 300}).
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(b) M = 16 (M = {±1500±1,±2400±1,±8100±1,±8800±1} kHz)
and K = 600 (K = {−500, · · · ,−201} ∪ {201, · · · , 500})

Fig. 1. Singular values in Y; Ts = 1/15 ms, and Tg = 9Ts/128. The
conditions of Figs. 1(a) and 1(b) are based on those of Figs. 3(a) and 3(b) in
[7], respectively.

where Ỹ is a K×K diagonal matrix containing only the first
L diagonal elements of Y and expressed as

Ỹ = diag (σ0, σ1, · · · , σL−1, 0, · · · , 0) . (18)

From (17) and (18), we can obtain

V ' IK +XỸZH = IK +QRH , (19)

where Q is the K × L matrix that consists of the first L
columns of the matrix XỸ, expressed as

Q = [σ0x0 σ1x1 . . . σL−1xL−1], (20)

and R is the K×L matrix that consists of the first L columns
of the matrix Z, expressed as

R = [z0 z1 . . . zL−1] = [z′0 z′1 . . . z′K−1]
H . (21)

Combining (12) and (19), we finally obtain the decomposed
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Fig. 2. Power spectral density of the original OFDM, conventional orthogonal
precoding, and proposed method.
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Fig. 3. QPSK bit error rate in AWGN channel.

approximation of the orthogonal precoder Go:

Go ' (IK +QRH)

[
OM×D

ID

]
= ID +QS (22)

where S is the L×D matrix composed of the last D = K−M
columns of RH , expressed as

S = [z′M z′M+1 . . . z′K−1]. (23)

For (22), the p3recoding (11) can be rewritten as

d̄i ' di +QSdi, (24)

and the decoding (14) can be rewritten as

ri ' r̃i + SHQH r̃i. (25)

The proposed precoding (24) and decoding (25) require L(K+
D) = 2M(2K −M)L multiplications instead of the K(K −
M) multiplications of the conventional orthogonal precoding
if L = 2M .

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY IN MULTIPLICATIONS

precoding/decoding

Condition Fig. 3(a) in [7] Fig. 3(b) in [7]
Conventional [6] 355, 200 (100%) 1, 937, 600 (100%)

Proposed 19, 072 (5.4%) 89, 088 (4.6%)
(Example: K = 600, 600, M = 8, 16, L = 16, 32, respectively)

IV. NUMERICAL EXPERIMENTS

To evaluate the performance of the proposed method, we
conducted numerical experiments.

We firstly verified that the proposed method does not
degrade the performance of the conventional orthogonal
precoding under the conditions in Fig. 3(b) in [7] with
Ts = 1/15 ms, Tg = 9Ts/128, K = 600 (K =
{−500, · · · ,−201} ∪ {201, · · · , 500}), M = 16 (M =
{±1500±1,±2400±1,±8100±1,±8800±1} kHz), and L =
2M . Figure 2 shows the power spectral densities of the original
OFDM, the conventional orthogonal precoding of the SS, and
the proposed method. Figure 3 shows the bit error rates (BERs)
in an additive white Gaussian noise (AWGN) channel. These
show that the performance of the proposed method is identical
to that of the conventional orthogonal precoding with QPSK
modulation.

Next, we evaluated the computational complexity of the
proposed method compared with the conventional orthogonal
precoding under the conditions of Fig. 3(a)(b) in [7]. Table I
shows the computational complexity in multiplications against
that of the original OFDM. The conventional orthogonal
precoding has an obvious enormous computational complexity.
In contrast, the proposed method can drastically reduce the
computational complexity.

V. CONCLUSIONS

This paper has proposed a matrix decomposition of the
precoder matrix in the orthogonal precoding to reduce the
computational complexity. Numerical experiments showed that
the proposed method does not degrade the performances
and can reduce the computational complexity drastically for
both precoding and decoding, e.g., 4.6%, compared with the
conventional orthogonal precoding.

APPENDIX

Here, we prove
AGo = O. (26)

From (12), (13), and V being unitary (VHV = IK), we obtain

AGo = UΣVHV

[
OM×D

ID

]
= UΣ

[
OM×D

ID

]
. (27)

Because rank{A} = M , the diagonal matrix Σ contains D =
K−M singular values equal to zero along its diagonal. Thus
Σ is expressed as

Σ =

[
ΣM OM×D

OD×M OD×D

]
, (28)
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where ΣM is an M ×M diagonal matrix, and

Σ

[
OM×D

IK−M

]
= O, (29)

is satisfied trivially. For (27) and (29), we obtain (26).
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