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Abstract—Regarding linear estimation theory, the equivalence
of the Wiener and Kalman filters is a well-known topic; however,
the difference in a practical environment has not been thoroughly
discussed. This paper compares the Kalman smoother to the
Wiener smoother in terms of practical orthogonal frequency
division multiplexing channel estimation on the receiver side.
First, conditions for fair comparison are discussed. Under these
conditions, the performance and complexity for both methods
are numerically investigated. Comparison results show that the
Wiener smoother slightly outperforms the Kalman smoother
because it avoids cumulative error in sequential processing, while
the complexity of the Kalman smoother is always lower than
that for the Wiener smoother because there is no large matrix
operation.

I. Introduction

In recent years, the use of wireless communication devices
such as mobile phones has become widespread, leading to
a desire for more wireless speed and capacity. Orthogonal
frequency division multiplexing (OFDM) transmission is an
attractive technology that meets these needs. OFDM transmis-
sion is reliable and suited to wideband technology even in
multipath environments, and has already been implemented
in 3rd Generation Partnership Project Long Term Evolution
(3GPP LTE), wireless local area networks, and terrestrial dig-
ital broadcasting. In mobile communication, multipath fading
is a fundamental and unavoidable issue. One approach to cope
with it is to estimate and then compensate for the fading
channel on the receiver side. Improving channel estimation
accuracy is very important because doing so ultimately leads to
improved radio capacity. Proposals regarding OFDM channel
estimation [1] are roughly grouped into two methods: the batch
method, which considers multiple received symbols together,
and the sequential method, which considers each received
symbol individually. In [2], one of the authors proposed a
sequential OFDM channel estimation method based on the
Kalman filter [3]. On the other hand, the batch OFDM channel
estimation method is also applicable to the same problem when
latency is tolerated. The Wiener filter1 [4] is the most popular
batch method. Literature such as [5] sometimes describes the
Wiener filter as theoretically equivalent to the Kalman filter
under some conditions. However, it is considered that there is
no literature that discusses a detailed comparison in a practical
environment. Therefore, this paper compares both methods

1This is also called a linear minimum mean squared error (LMMSE) filter.

in practical OFDM channel estimation and summarizes the
resulting knowledge. Note that OFDM channel estimation in
this paper means estimation of narrow-band channel gains2 for
pilot signals on the receiver side.

The rest of this paper is structured as follows. Section II
describes the investigation assumptions and problem formula-
tion. Section III describes the conditions for fair comparison.
Section IV presents numerical analysis results for the compar-
ison. Section V summarizes the discussion.

II. Investigation Assumptions and Problem Formulation

A. Investigation Assumptions

A small-scale fading channel for known pilot signals is
sequentially estimated on the receiver side in an OFDM
transmission environment. The frequency interval between
OFDM subcarriers is designed to be sufficiently wide to ignore
any inter-subcarrier interference caused by the Doppler effect.
The pilot subcarrier is not coded and is scattered in a comb
pattern [6] in the time and frequency domains. dt and df
denote the time and frequency intervals between adjacent pilot
subcarriers, respectively. Multipath wave characteristics are
determined by wide-sense stationary uncorrelated scattering
(WSSUS) [7] and are invariant over the OFDM symbol du-
ration. The maximum multipath wave delay is shorter than
the OFDM guard interval (GI). In order to model time and
frequency selectivity, many independent measurements are
needed; however, for simplicity, this paper assumes typical
models for land mobile communications [8]. Time selectivity
is based on the Jakes’ model [9] and frequency selectivity
is based on the exponential delay profile [9]. The fading
channel obeys a stationary stochastic process. This implies
that hyperparameters such as the Doppler frequency, delay
spread, and Eb/N0 are time-invariant during the study period.
Furthermore, true hyperparameters are assumed to be known
for simplicity. The nonlinearity of the employed analog radio
circuit and imperfections in time, phase, and frequency at
coherent detection are all negligible. This paper considers only
a single-input, single-output environment.

The following description pertains to notational assump-
tions. Ek denotes the k-by-k identity matrix. For any matrix
A, AT denotes its transpose matrix, AH denotes its complex

2This is also called the channel frequency response (CFR).
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Fig. 1. Diagram of the OFDM transmitter and receiver in an equivalent
baseband system.

conjugate transpose matrix, A−1 denotes its inverse matrix, and
A1/2 denotes its square root matrix3. diag(A0, A1, . . .) denotes
a matrix in which each element in parentheses is sequentially
set to the diagonal element. A = {a(row, col)} denotes that the
row-th and the column-th entry of A is defined by function a.
⊗ denotes the Kronecker product. 0k denotes the k-by-1 zero
vector. When random vector r has an independent complex
normal distribution with mean vector µ and covariance matrix
Γ, the relationship is written as r ∼ CN(µ,Γ). For any value
·, E[·] denotes its time average, | · | denotes its absolute value,
and ·̂ denotes its estimator. j denotes imaginary unit

√
−1. O(u)

denotes that complexity is proportional to u.

B. Problem Formulation

This paper’s approach for sequential OFDM channel es-
timation first estimates the narrow-band channel gains for
pilot subcarriers and then interpolates that gains for non-pilot
subcarriers. We discussed various interpolation methods [10]
and found that appropriate methods already exist; thus, inter-
polation is beyond scope of this paper.

Fig. 1 shows the OFDM transmitter and receiver in an
equivalent baseband system [11]. On the transmitter side,
information bits are parallelized and modulated to the symbols
of each subcarrier. An inverse fast Fourier transform is applied
to these symbols, which are then serialized. A GI is appended
to the output before the OFDM signal is transmitted. On the
receiver side, the GI is removed from the received OFDM
signal, the output is parallelized, and a fast Fourier transform
is applied to the symbols of each subcarrier. These symbols
are demodulated and serialized to detect information bits.
The relationship between the received and transmitted pilot
symbols is expressed as

yP(t) = SP(t)h̃P(t) + vP(t), (1)

where superscript P for vector/matrix variables denotes that
these consider pilot subcarriers only. yP(t) = [y0(t), . . . , yi(t),
. . . , yI−1(t)]T denotes the I-by-1 received pilot symbol vec-
tor at the t-th symbol, and its subscript denotes a pilot
subcarrier index in the frequency domain. I corresponds to
the maximum number of pilot subcarriers in one symbol
duration. SP(t) = diag(s0(t), . . . , si(t), . . . , sI−1(t)) denotes the
I-by-I transmitted pilot symbol matrix at the t-th symbol.
h̃P(t) = [h̃0(t), . . . , h̃i(t), . . . , h̃I−1(t)]T denotes the narrow-band
channel gain vector of pilot subcarriers at the t-th symbol.

3This matrix satisfies the relationship A = A1/2(A1/2)H.

vP(t) ∼ CN(0I ,VP) denotes the I-by-1 additive white Gaussian
noise vector at the t-th symbol, and when σ2 is assumed to
be the average noise power of each subcarrier, VP can be
expressed as VP = σ2EI .

For the OFDM channel estimation, various formulations of
the Kalman and Wiener filters have been proposed [1], [2], [6],
[10], [12]. This paper supposes the following formulations that
are considered to be the most basic.

1) Kalman Filter: The formulation of the Kalman filter is
based on the state-space model according to [2], but the ex-
tended formulation for complexity reduction is not considered.
Observation and state equations for the state-space model are
expressed as

yP(t) =FP(t) θP(t) + vP(t), (2)
θP(t) =GP(t) θP(t − 1) + wP(t), (3)

where yP(t) denotes the I-by-1 observation vector for pilot
subcarriers at the t-th symbol (as in (1)), FP(t) denotes the
I-by-I observation matrix for pilot subcarriers at the t-th
symbol, θP(t) = [θ0(t), . . . , θi(t), . . . , θI−1(t)]T denotes the I-
by-1 state vector for pilot subcarriers at the t-th symbol, and
GP(t) denotes the I-by-I transition matrix for pilot subcarriers
at the t-th symbol. vP(t) ∼ CN(0I ,VP) denotes the I-by-1
observation noise vector for pilot subcarriers at the t-th symbol;
its covariance matrix is set to VP = diag(V0, . . . ,Vi, . . . ,VI−1)
(as in (1)). wP(t) ∼ CN(0I ,WP) denotes the I-by-1 state noise
vector for pilot subcarriers at the t-th symbol; its covariance
matrix is set to WP = diag(W0, . . . ,Wi, . . . ,WI−1).

Detailed definitions regarding the observation equation are
given below:

h̃P(t) = ΣP θP(t), (4)
FP(t) = SP(t)ΣP, (5)

ΣP =
(
ΩP

f

)1/2
, (6)

ΩP
f =
{
ρ (∆t = 0, ∆ f = (col − row)df )

}
, (7)

ρ(∆t = 0, ∆ f ) =
1 + j2π∆ fστ

1 + (2π∆ fστ)2 , (8)

where ρ(∆t, ∆ f ) denotes the time and frequency correlation
coefficient of the narrow-band channel gain, ∆t denotes the
time difference, ∆ f denotes the frequency difference, and στ
denotes the channel delay spread.

Detailed definitions regarding the state equation are given
below:

GP(t) = EI , (9)
WP = 2m2(1 − ρ(∆t = 1dt, ∆ f = 0)

)
EI , (10)

ρ(∆t, ∆ f = 0) = J0(2π fD∆t), (11)

where m2 denotes the average power of the narrow-band
channel gain for each pilot subcarrier, J0 represents Bessel
functions of the first kind of order zero [9], and fD denotes
the channel maximum Doppler frequency.
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Fig. 2. Estimated pilot signals for smoothing (L = 2 and I = 8).

2) Wiener Filter: The formulation of the Wiener filter is
based on [12, eq. (41)]:

ĤP = ΩP
t f

(
ΩP

t f +
β

SNR
EI

)−1

ĤP
LS, (12)

ĤP =

[
ˆ̃hP(t − L)T, . . . , ˆ̃hP(t)T, . . . , ˆ̃hP(t + L)T

]T
, (13)

ΩP
t f =


ΩP

t ⊗ ΩP
f for upper diagonal elements

of ΩP
t ,

ΩP
t ⊗
(
ΩP

f
)H otherwise,

(14)

ΩP
t =
{
ρ (∆t = |col − row|dt, ∆ f = 0)

}
, (15)

β = E[|si(t)|2] E[1/|si(t)|2], (16)

ĤP
LS =

[
ˆ̃hP

LS(t − L)T, . . . , ˆ̃hP
LS(t)T, . . . , ˆ̃hP

LS(t + L)T
]T
, (17)

ˆ̃hP
LS(t) = SP(t)−1yP(t), (18)

where the batch time period corresponds to 2L + 1 symbols.

III. Conditions for Fair Comparison

A. Type of Estimation

When the data at the t-th symbol are estimated using the
data up to the k-th symbol, the estimation is generally classified
into the following three types depending on the relationship
between t and k: 

Filtering if t = k,
Prediction if t > k,
Smoothing if t < k.

This paper supposes smoothing for the ease of comparison.
Regarding the Wiener filter, ˆ̃hP(t) in Section II-B2 straight-
forwardly corresponds to a smoothing estimator. For example,
when L = 2 and I = 8, estimated pilot signals for smoothing
are represented by the hatched area in Fig. 2. The batch
smoothing process in this paper is hereafter referred to as the
Wiener smoother. On the other hand, adapted to the Wiener
smoother, the Kalman filter requires a backward smoothing
process in addition to that in Section II-B1. When the popular
Rauch-Tung-Striebel (RTS) algorithm [13] is applied to the
backward smoothing process, backward recursion in this study
is expressed as

Smoothing estimator (mean) of state: θ̂P
S (t)

= θ̂P(t) + CP(t)GP(t + 1)HRP(t + 1)−1
(
θ̂P

S (t + 1) − aP(t + 1)
)

= θ̂P(t) + CP(t)RP(t + 1)−1
(
θ̂P

S (t + 1) − aP(t + 1)
)
, (19)

where definitions of θ̂P(t), CP(t), aP(t), and RP(t) are according
to [2]; θ̂P(t) and CP(t) denote filtered estimators (mean and
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Fig. 3. Scattered pilot subcarrier allocation.

TABLE I
Computer simulation assumptions

Carrier frequency 2 [GHz]

Maximum Doppler
frequency: fD

14 [Hz] (i.e., 7.6 [km/h])

Delay profile
• 24-path exponential

– Delay spread: 1 [µs]
– Maximum delay: 4.7 [µs] (within GI)

Numerical compu-
tation of Kalman
filter/smoother

A square root Kalman filter/smoother based on
singular value decomposition [15] is applied to
suppress the degradation in numerical accuracy.

variance, respectively) of state; and aP(t) and RP(t) denote
one-step-ahead prediction (mean and variance, respectively) of
state. The RTS algorithm implicitly assumes that the Kalman
filter has been swept in advance, so θ̂P(t), CP(t), aP(t), and
RP(t) are assumed to be already calculated and stored via the
advanced Kalman filter. The sequential smoothing process in
this paper is hereafter referred to as the Kalman smoother.

B. Fixed Time Lag L

The fixed time lag, L, in both the Kalman and Wiener
smoothers must be specified in a practical smoothing process.
Lag L should be the required minimum because sequential
processing may yield cumulative error unlike batch processing.
To determine this value, a computer simulation is performed
using 3GPP LTE specifications with a 5 MHz bandwidth. The
frequency interval between each subcarrier is 15 [kHz], and
the symbol length (except for the GI) corresponds to 66.7
[µs]. Cell-specific reference signals (CRSs) [14] are regarded
as pilot subcarriers. Fig. 3 shows the CRS allocation. In
the figure, CRSs at timeslots 4, 11, · · · are not used in the
simulation, dt = 0.5 [ms], df = 90 [kHz], and a specific
pseudorandom sequence for the CRSs is modulated by QPSK.
Thus, β/SNR = 1/(2Eb/N0) in (12). There is a total of 300
subcarriers, and the number of pilot subcarriers for one symbol
duration is 50. An isolated cell and single-user environment
without inter-cell interference and multiple access are assumed.
Table I shows the other assumptions used for the computer
simulation.

Fig 4 shows the impact of L on the cumulative error in
the Kalman smoother. In the figure, L (one slot corresponds
to one dt) is denoted on the X-axis and the normalized mean
squared error (NMSE) =

∑I−1
i=0 E[|h̃i(t)− ˆ̃hi(t)|2]

/∑I−1
i=0 E[|h̃i(t)|2]
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is denoted on the Y-axis. The figure shows that L becomes
optimal at around 20, so L is set to 20 [slots] (i.e., 10 [ms]) in
the following investigation. This optimal L value corresponds
to the time lag where the time correlation coefficient decreases
from 1 to approximately 0.8 for fD = 14 [Hz].

IV. Numerical Analysis

A. Performance Comparison

To compare the performance of NMSE and the bit error
rate (BER), a computer simulation is performed under the same
conditions as in Section III-B.

1) NMSE Performance: Fig. 5 shows the NMSE perfor-
mance for fD = 14 [Hz]. In the figure, Eb/N0 is denoted on
the X-axis and the NMSE is denoted on the Y-axis. Both
the Kalman and Wiener smoothers at L = 20 exhibit good

TABLE II
Data subcarrier assumptions

Modulation QPSK

Interpolation of
channel estimator

• Frequency domain: Linear insertion
• Time domain: The nearest neighbor

Equalization

• Zero forcing (ZF) [11] for LS channel esti-
mator yi(t)/si(t)

• Minimum Mean Squared Error (MMSE)
[11] for the other channel estimators

Channel coding
• Convolutional codes

– Rate: 1/2
– Constraint length: 7

Channel decoding Soft-decision Viterbi algorithm

Interleaving

• Random interleaver
– Unit: Symbol-by-symbol
– Depth: 5 Resource blocks (RBs) [14],

which corresponds to 400 symbols

performance at almost the same level. However, the Wiener
smoother at L = 20 slightly outperforms the Kalman smoother
at L = 20. For example, at Eb/N0 = 0 [dB], the Wiener
smoother at L = 20 improves the NMSE by 0.02 compared
to the Kalman smoother at L = 20. Cumulative error in the
sequential processing yields this difference. The higher Eb/N0
becomes, the smaller this cumulative error becomes. Thus,
at Eb/N0 = 20 [dB], the NMSE difference decreases to the
negligible value of 0.0003.

The other performance levels such as the least-squares
(LS) estimator, yi(t)/si(t), Wiener smoother at L = 0, and
the Kalman filter are also plotted in Fig. 5 for deeper un-
derstanding. The LS estimator and Wiener smoother at L = 0
estimate a fading channel using not past and future information
but current information only. The Wiener smoother at L = 0
further considers frequency correlation and outperforms the LS
estimator. The Kalman filter estimates the fading channel using
past and current information considering frequency correlation.
Thus, the Kalman filter outperforms the Wiener smoother at
L = 0. The Kalman and Wiener smoothers at L = 20 estimate
the fading channel using all the past, current, and relative
future information considering frequency correlation. Thus,
the Kalman and Wiener smoothers at L = 20 outperform the
Kalman filter. As a result, the more information that is used
for the estimation, the higher the level of performance that can
be archived essentially.

2) BER Performance: Fig. 6 shows the BER performance
for fD = 14 [Hz] using the data subcarrier assumptions given
in Table II. The BER and Eb/N0 are denoted on the Y-axis
and X-axis, respectively. The BER performance improves in
the same order as the NMSE performance in Fig. 5. Both
the Kalman and Wiener smoothers at L = 20 exhibit almost
the same performance close to Lower Bound 1. However, the
Wiener smoother at L = 20 slightly outperforms the Kalman
smoother at L = 20 due to the avoidance of cumulative error
in the sequential processing. For example, at the BER of 10−4,
the Wiener smoother at L = 20 improves the coding gain by
0.8 dB compared to the Kalman smoother at L = 20.

B. Complexity Comparison

Complexity in this paper refers to the number of multipli-
cations and divisions occurring during the smoothing process
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TABLE III
Complexity for matrices prepared before smoothing process

Complexity Note

FP(t) (2L + 1)I2 + I3/6 Refer to (5) and (6)
ΩP

t f (2L + 1)I Refer to Toeplitz and Hermitian (14)

TABLE IV
Complexity for smoothing process

Complexity Note
Kalman filter 5I3 + 2I2 (for 1 step) Refer to Table 1 in [2]
RTS algorithm I3 + I3 + I2 (for 1 step) Refer to (19)
Derivation of h̃P(t)
from state

I2 (for the t-th symbol) Refer to (4)

Wiener smoother 2((2L+ 1)I)3+
((2L+ 1)I)2+
(2L+ 1)I

Refer to (12)

which estimates the pilot signals at the t-th symbol. We
assume pure matrix operations, and that the complexities of
the inverse matrix derivation and Cholesky factorization are I3

and I3/6, respectively. In addition, we assume that the time and
frequency correlation coefficients have been calculated in ad-
vance. Table III gives the complexity for the matrices prepared
before the smoothing process. Note that O(1) complexity such
as the setting of VP and WP is omitted from Table III because
it has negligible impact. Table IV also gives the complexity
for the smoothing process itself. According to Tables III and
IV, the complexity for the Kalman smoother is [Preparation of
FP(t)] + (2L+ 1)[Kalman filter for 1 step] + L[RTS algorithm
for 1 step] + [Derivation of h̃P(t) from state for the t-th
symbol] = (12L + 5 + 1/6)I3 + (7L + 4)I2, and that for the
Wiener smoother is [Preparation of ΩP

t f ] + [Wiener smoother]
= 2(2L+1)3I3+(2L+1)2I2+2(2L+1)I. Thus, the complexity for
the Kalman smoother is always lower than that for the Wiener
smoother for any integer L ≥ 0 and I ≥ 1. The major reason for
this result depends on the presence or absence of a large matrix
operation. In particular, the coefficient of I3 for the Wiener
smoother reaches O(L3) , while that for the Kalman smoother
remains at O(L). According to this fact, the longer L becomes,

the higher the complexity ratio of the Wiener smoother to the
Kalman smoother becomes. For example, the ratio reaches 556
for L = 20 and I = 50.

V. Conclusions

This paper compared the Kalman smoother to the Wiener
smoother in terms of practical OFDM channel estimation
on the receiver side. These two methods are theoretically
equivalent but practically different. First, the conditions for fair
comparison were discussed. Regarding the smoothing process,
the fixed time lag should be set to the required minimum,
because sequential processing yields cumulative error. The
optimal value corresponds to the time lag where the time
correlation coefficient decreases from 1 to approximately 0.8
for fD = 14 [Hz]. The results of numerical analysis lead to the
following conclusions.

• Performance (NMSE and BER): Both the Kalman and
Wiener smoothers exhibit almost the same good per-
formance levels. However, the Wiener smoother slightly
outperforms the Kalman smoother because it avoids cu-
mulative error in the sequential processing. The NMSE
and coding gain improvements using the Wiener smoother
reach, at most, 0.02 and 0.8 dB, respectively, compared
to those for the Kalman smoother.

• Complexity: Regarding the number of multiplications
and divisions occurring during the smoothing process
which estimates the pilot signals at some symbols, the
complexity of the Kalman smoother is always lower than
that for the Wiener smoother because there is no large
matrix operation. For example, the complexity ratio of the
Wiener smoother to the Kalman smoother reaches 556 for
L = 20 and I = 50.

According to the above, we recognize that the Kalman and
Wiener smoothers have different advantages; the Kalman filter
has a lower complexity level whereas the Wiener filter yields
better performance.
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