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Abstract—In this paper, we study the impact of clock timing
mismatch of analog-to-digital converter in a receiver that employs
quadrature bandpass sampling of the radio frequency (RF)
signal. It is shown that the clock timing mismatch introduces not
only symbol timing offset but also image interference, that is, the
interference between in-phase and quadrature signals. Then, a
mismatch compensation scheme and a pilot-aided mismatch esti-
mation method are proposed. We also propose a blind estimation
method, where the clock timing mismatch can be estimated from
the second order statistics of the sampled sequences. Numerical
simulations confirm the validity of the proposed methods, even
in the presence of unknown channel.

Keywords—Direct sampling receiver, bandpass sampling, clock
timing mismatch estimation

I. INTRODUCTION

Nowadays, there exist various wireless communication stan-
dards, and it is expected that a wireless transceiver can be
readily adapted to these standards. Software defined radio
(SDR) is considered as a promising solution to realize such
reconfigurable radio transceivers [1]. In an SDR receiver, ana-
log circuits are desired to be mitigated into the digital domain
as much as possible, and consequently, the received signal
is preferred to be directly sampled just behind the receive
antenna. Considering the high frequency of the received RF
signal, a very high speed analog-to-digital converter (ADC) is
required to sample it at Nyquist rate. However, the state-of-
the-art ADC satisfying this requirement is not only expensive
but also high power-consumption. As long as the conveyed
baseband signal is our concern, an effective way is to directly
sample the received RF signal at sub-Nyquist rate, namely,
bandpass sampling [2].

By saving one ADC and one local oscillator (LO) in
exchange for one bandpass filter to eliminate out-of-band
signals, the direct sampling receiver makes itself a compet-
itive alternative to the well-known direct conversion receiver
(DCR). In the context of bandpass sampling, the RF signal can
be downconverted into an inter-mediate frequency (IF) band by
uniformly sampling at sub-Nyquist rate that is carefully chosen
to avoid aliasing, and subsequently, the IF signal is digitally
downconverted into the baseband [2], [3], [4]. A further drop
in sampling rate can be achieved by periodic non-uniform
bandpass sampling [5], [6], which is also known as quadrature
bandpass sampling and a specific type of the Kohlenberg’s

second order sampling [7]. Different from uniform bandpass
sampling, quadrature bandpass sampling allows two aliased
bands to overlap with each other, since the appropriately
allocated non-uniform clock plays a role as Hilbert transform.
When the carrier frequency of the received RF signal is an
integer multiple of sampling frequency, the aliased spectrum is
centered at zero, the baseband signal can be directly obtained
from the output of the ADC. Obviously, the ADC is the key
device in a direct sampling receiver, and the signal quality
highly depends on the accuracy of its clock timing. The effect
of ADC clock jitter in uniform and non-uniform bandpass
sampling can be found in [8], [9] and [10], respectively. For
non-uniform bandpass sampling, the clock signal is exactly
composed of two uniform clock signals with an intentional
timing offset. This timing offset is used to obtain a timing-
shifted quadrature-phase signal first, then a subsequent digital
timing offset correction provides the proper quadrature-phase
signal [11]. Since the timing offset is inversely proportional
to the carrier frequency, a precise offset is not easy to achieve
in practice. Although it is known that an incorrect offset,
namely a clock timing mismatch (CTM), will cause severe
signal degradation [12], how to estimate it is still unclear.

In this paper, we focus on the CTM compensation in
receivers which employ quadrature bandpass sampling. First,
we formulate the mathematical model of quadrature bandpass
sampling with incorrect clock timing offset. It is shown that
the CTM introduces not only symbol timing offset but also
cross-talk between the in-phase and quadrature-phase signals,
that is to say, image interference. Thus, the effect of CTM
can be analyzed in terms of image rejection ratio (IRR). It
can be found that the IRR is very sensitive to the CTM, and
the range of tolerable mismatch in practice is given. Then, a
compensation scheme is introduced, and a CTM estimation
method is proposed. Since the samples at the ADC output are
also distorted by the symbol timing offset, the estimation of
CTM is not straightforward, even with the assistance of pilot.
Fortunately, considering the practical CTM value, we find that
the symbol timing offset is negligible small compared to the
symbol duration. Based on this observation, a pilot-aided CTM
estimation method is proposed. Also, we propose a blind CTM
estimation method, where the CTM is estimated from the auto-
and cross-correlation of the sampled sequences. Finally, the
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validity of the proposed methods are confirmed by numerical
simulations.

II. PROBLEM FORMULATION

A. Quadrature Bandpass Sampling

We assume that the signal of interest lies in [fc−B/2, fc+
B/2]∪[−fc−B/2,−fc+B/2], where fc and B denote the car-
rier frequency and the bandwidth of the signal, respectively. To
avoid aliasing, the received signal is preliminarily filtered by a
bandpass filter, which strictly eliminates out-of-band signals.
As a consequence, the bandpass signal contains no spectrum
except for [fc − B/2, fc + B/2] ∪ [−fc − B/2,−fc + B/2],
which can be represented as

xp(t)=xI(t) cos(2πfct)− xQ(t) sin(2πfct)

=
1

2
[x(t)ej2πfct + x∗(t)e−j2πfct], (1)

where x(t) = xI(t) + jxQ(t) is the baseband representation
of xp(t).

In quadrature bandpass sampling, xp(t) is directly sampled
at a sub-Nyquist rate. The sampling interval Ts is chosen to
satisfy mod(Ts, 1/fc) = 0, and Ts ≤ 1/B. If the carrier fre-
quency fc is an integer multiple of B, which is called as half-
integer positioning [2], then the sampling interval becomes
1/B. In this paper, half-integer positioning is assumed for the
sake of simplicity, that is, Ts = 1/B and fcTs = P , where P
is an arbitrary integer. Noteworthy, even if the band of signal
is not half-integer positioning, the following discussion can
be applied by relaxing the sampling interval to Ts < 1/B and
subsequently employing the digital sampling-rate conversion.

The ADC employs a non-uniform sampling clock, which
can be obtained from the system clock using a programmable
divider. Then, under the assumption of perfect carrier synchro-
nization, the received RF signal is sampled at t = nTs and
t = nTs+∆T , respectively, where ∆T denotes the intentional
timing offset. The sampled sequence at t = nTs can be written
as

x1(n)=xp(nTs)

=
1

2
[x(nTs)e

j2πfcnTs + x∗(nTs)e
−j2πfcnTs ]

=
1

2
[x(nTs) + x∗(nTs)] = xI(nTs). (2)

On the other hand, let the timing offset be

∆T =
3

4fc
+ LTs, (3)

where L is an arbitrary integer, then the sampled sequence at
t = nTs + ∆T is given by

x2(n)=xp(nTs + ∆T )

=
1

2
[x(nTs + ∆T )ej2πfcnTsej2πfc∆T

+x∗(nTs + ∆T )e−j2πfcnTse−j2πfc∆T ]

=
1

2
[−jx(nTs + ∆T ) + jx∗(nTs + ∆T )]

=xQ(nTs + ∆T ). (4)

BPF

CLOCK

ADC

Fig. 1. Diagram of quadrature bandpass sampling.

Therefore, we can obtain the baseband equivalent of xp(t) as

x(n) = x1(n) + jx2(n)gT (5)

where x2(n) = [x2(n), . . . , x2(n − K + 1)], and g is a
compensation filter for the distortion caused by the symbol
timing offset ∆T . Since ∆T is obviously fractional to the
sampling interval, one possible choice of g is a fractional delay
filtering [13] with finite impulse response (FIR) given by

g(k) =

{
sinc(k −∆T/Ts), 0 ≤ k ≤ K − 1

0, otherwise
, (6)

where K = 2L + 1 denotes the filter length. As we can see
from (6), the length of the filter g is very long, due to the
long tail of sinc function. Therefore, we need to the impulse
response up to KTs, which is chosen as the impulse response
converges to some extent. The effect of this truncation will
be examined later by numerical simulations. Once the timing
offset induced distortion is perfectly compensated, we have
the desired baseband signal

x(n) = xI(nTs) + jxQ(nTs).

Fig. 1 shows a diagram of quadrature bandpass sampling in
the direct sampling receiver.

B. Clock Timing Mismatch
Since fcTs = P , the timing offset in (3) can be rewritten

as
∆T =

3

4fc
+
LP

fc
=

(
3

4
+ LP

)
1

fc
. (7)

It is clear that the timing offset is inversely proportional to the
carrier frequency. Although the sampling interval Ts has been
relaxed to P/fc, the timing offset still contains a fractional
part of 1/fc, which is not easy to achieve in practice.

When the clock timing offset is incorrect, even with perfect
samples of x1(n) = xp(nTs) = xI(nTs), x2(n) is however
obtained by sampling xp(t) at t = nTs + ∆T + φ, where φ
denote a CTM. The corresponding sequence is given by

x′2(n)=xp(nTs + ∆T + φ)

=
1

2
[−jx(nTs + ∆T + φ)ej2πfcφ

+jx∗(nTs + ∆T + φ)e−j2πfcφ]

=xQ(nTs + ∆T + φ) cos(2πfcφ)

+xI(nTs + ∆T + φ) sin(2πfcφ). (8)

Proceedings of APCC2015 copyright © 2015 IEICE 14 SB 0087

445



3

Fig. 2. IRR of the received signal at normalized frequency f/fs = 0.3
when the CTM φ is varied from −1/2fc to 1/2fc.The carrier frequency is
assumed to be fc = 50fs.

Compared to (4), we can see that the CTM brings not only
an extra symbol timing offset but also part of in-phase signal
to the quadrature-phase signal. The effect of the CTM can
be observed more clearly from the frequency domain. Given
x′2(n) = [x′2(n), . . . , x′2(n−K + 1)], let

x′(n) = x1(n) + jx′2(n)gT , (9)

whose frequency domain representation is

X ′(f)=
1

2
[1 + ej2π(f(∆T+φ)/Ts+fcφ)G(f)]X(f)

+
1

2
[1− ej2π(f(∆T+φ)/Ts−fcφ)G(f)]X∗(−f),(10)

where X ′(f), X(f), and G(f) represent the Fourier transform
of x′(n), x(n), and g, respectively. With an ideal compensa-
tion filter of G(f) = e−j2πf∆T/Ts , we obtain

X ′(f) = A1(f)X(f) +A2(f)X∗(−f), (11)

where,

A1(f)=
1

2
[1 + ej2π(fφ/Ts+fcφ)], (12)

A2(f)=
1

2
[1− ej2π(fφ/Ts−fcφ)]. (13)

From (11), we can see that the CTM results at an image
interference, therefore the IRR is a good measurement of its
effect, which is given by

IRR(f) =
|A1(f)|2

|A2(f)|2
. (14)

Fig. 2 shows the IRR versus the CTM for −1/2fc to 1/2fc. It
can be seen that the IRR curve is very sharp around the origin,
which means even a small CTM can cause severe distortion.
In case of φ = ±1/4fc, the IRR becomes 0 dB, which corre-
sponds to the complete loss of the quadrature-phase signal, and
there is no way to recover it. As a consequence, the tolerable
timing mismatch in practice is limited to (−1/4fc, 1/4fc).

III. MISMATCH COMPENSATION

Obviously, the CTM should be compensated before any
further processing. If the CTM φ is known, the sample timing
offset in x′2(n) can be easily compensated by replacing ∆T
with ∆T +φ in the compensation filter g of (5). After perfect
symbol timing offset compensation, the output signal is given
by

x̄′2(n) = xQ(nTs) cos(2πfcφ) + xI(nTs) sin(2πfcφ). (15)

The remaining cross-talk in (15) is similar to the effect of IQ
imbalance in the DCR, which can be compensated as

x̂I(n)=x1(n), (16)
x̂Q(n)=cot(2πfcφ)x̄′2(n)− tan(2πfcφ)x1(n). (17)

A. Pilot-aided Mismatch Estimation

To implement the above-mentioned compensation scheme,
we need to estimate the CTM first. Although the CTM is
contained in the Q branch symbols in (8), it seems not easy to
obtain it even xI(nTs+∆T ) and xQ(nTs+∆T ) are known for
a calibration case, since the unknown CTM φ actually result
in unknown xI(nTs + ∆T +φ) and xQ(nTs + ∆T +φ). The
effect of φ should be investigated in more details.

Considering the range of tolerable φ, the symbol timing
offset ∆T + φ satisfies(

1

2fcTs
+ L

)
Ts ≤ ∆T + φ ≤

(
1

fcTs
+ L

)
Ts, (18)

where the symbol timing offset is separated into an integer
part and a fractional part with respect to the sampling interval
Ts, for the sake of clarity. Since L and P are integer, the
fractional part becomes

Ts
2P
≤ ∆T + φ− LTs ≤

Ts
P
. (19)

Since the carrier frequency is usually much higher than the
sampling frequency, P is a large number and the fractional
part of φ is quite small with respect to Ts. For example, if the
signal bandwidth is B = 20 MHz and the carrier frequency is
fc = 1 GHz, then P = 50 and 1/P = 0.02 � 1, which
means the fractional part is less than 2% of the sampling
interval. Bearing in mind that the baseband signal is generally
a low-pass signal, the effect of this small fractional part of
timing offset is negligible. Therefore, we can approximate
that x(nTs + ∆T + φ) ≈ x(nTs + LTs). This observation
is the key for the estimation of φ, since L is a known design
parameter, and the corresponding integer timing offset can be
easily handled by realigning two branch signals.

Using the approximation, (8) can be reduced to

x′2(n) = xQ(n+L) cos(2πfcφ)+xI(n+L) sin(2πfcφ). (20)

Even with known pilot sequence, since the received signal
xI(n) and xQ(n) are usually distorted by the channel, it is
not easy to estimate the mismatch directly from (20) when
the channel response is unknown. However, it can be seen that
the mismatch φ is independent of the time index n, therefore,
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the periodic pilot sequence is suitable. Here, we employ the
generalized periodic pilot (GPP) sequence in [14] to estimate
the CTM. The GPP sequence x(n) = [x(n) x(n−1) . . . x(n−
M + 1)]T is designed to satisfy x(n+Q) = ejθx(n), where
Q denotes the period of GPP and θ is an intentional phase
rotation. This relationship still holds after passing through the
linear time-invariant channel whenever the channel length is
less than Q. From (16) and (17), the received sequence after
the compensation can be written as

x̄(n) = x1(n+ L) + j{βx′2(n)− αx1(n+ L)}, (21)

where, α = tan(2πfcφ), β = 1/ cos(2πfcφ), and x1(n)
and x′2(n) are the vector representation of x1(n) and x′2(n),
respectively. The compensated GPP sequence should also
satisfy x̄(n + Q) − ejθx̄(n) = 0, and after simplifying the
equation, we obtain

Ah = b, (22)

where h = [cos θ + α sin θ, cos θ − α sin θ, β sin θ]T , b =
[xT1 (n+ L+Q),xT1 (n+ L)]T , and

A =

[
x1(n+ L) 0 −x′2(n)

0 x1(n+ L+Q) x′2(n+Q)

]
, (23)

respectively. (22) can be solved based on least square (LS)
criterion, then we have

φ̂ =

(
1

2πfc

)
tan−1

(
ĥ(1)− ĥ(2)

2 sin θ

)
. (24)

where,
ĥ = (ATA)−1ATb. (25)

B. Blind Mismatch Estimation

Compared to the pilot-aided estimation, blind estimation
methods have the advantage of effective resource utilization
by reducing excess pilot sequences and the independency
of the standards. In this section, we also propose a blind
estimation method using the second order statistics of the
received signals.

Under the assumption of perfect carrier synchronization, the
autocorrelation function (ACF) of xI(n) can be obtained from
x1(n) as

Rx1
(k) = E[x1(n)x1(n−k)] = E[xI(n)xI(n−k)] = RxI

(k)
(26)

where E[·] denotes expectation. On the other hand, using the
approximation in (20), the cross-correlation function (CCF) of
x1(n) and x′2(n) is given by

Rx12′ (k)=E[x1(n)x′2(n− k)]

=cos(2πfcφ)E[xI(n)xQ(n− k + L)]

+ sin(2πfcφ)E[xI(n)xI(n− k + L)]. (27)

It is known that the signal employed in various wireless
communication standards, such as QAM or OFDM signal, is
proper [15], which means that the CCF of its in-phase and
quadrature-phase signals obeys

RxIQ
(k) = E[xI(n)xQ(n− k)] = 0, ∀k ∈ R. (28)

Fig. 3. IRR under AWGN channel, SNR=30 dB, φ = −1/16fc.

Since this proper property holds after passing through the
channel, (27) can be reduced to

Rx12′ (k) = sin(2πfcφ)RxI
(k − L). (29)

Then, the CTM φ can be estimated as

φ̂ =

(
1

2πfc

)
sin−1

(
Rx12′ (k)

Rx1(k − L)

)
, (30)

where RxI
(k − L) can be obtained using x1(n) in (26).

IV. NUMERICAL SIMULATION

The proposed methods are evaluated through numerical
simulations. In the following simulations, the signal is OFDM
signal with 1024 subcarriers, whose spacing is 15 kHz and
each subcarrier is modulated by 64-QAM. We assume the half-
integer positioning for the spectrum location and the carrier
frequency is set to be 50 times higher than the sampling
frequency, that is, P = 50, and the length of g is K = 17.
The multi-path fading channel has 6 paths, and the power
delay profile is based on ITU Pedestrian B channel model.
The length of the cyclic prefix is 64, and the period of GPP
sequence is Q = 64 and θ = π/8. While M = 600 samples
of GPP sequence are used in the pilot-aided estimation, the
blind estimation method utilizes 10 OFDM symbols.

Fig. 3 and 4 show the IRR performances of the proposed
methods in AWGN channel and multi-path fading channel,
respectively. It can be seen that the pilot-aided estimation
improves the IRR across the signal band, which achieves
near 80 dB IRR for both AWGN and multi-path fading
channels. On the other hand, the blind estimation method
also shows near 70 dB IRR, that is about 50 dB above the
no compensation case. We also evaluate the symbol error
rate (SER) of the proposed method under multi-path fading
channel. Fig. 5 shows SER performance versus SNR after
the compensation of the clock timing mismatch. The CTM
is uniformly distributed in (−1/8fc, 1/8fc) corresponds to
above 7 dB IRR. The SER of the DCR is plotted together
as a benchmark. While the error floor can be seen in the no
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Fig. 4. IRR under multi-path fading channel, SNR=30 dB, φ = −1/16fc.

Fig. 5. SER performance of the proposed methods.

compensation case, both of the pilot-aided and blind estimation
method show good SERs very close to the ideal case of no
mismatch, as well as the DCR.

Since the compensation filter g originally has a long impulse
response due to the slow convergence of sinc function, its
truncation effect should be investigated in detail. Fig. 6 shows
the average IRR over signal bandwidth under various length
of g. It can be seen that K = 17 is sufficient for the
compensation, which brings around 80 dB IRR.

V. CONCLUSION

In this paper, we focused on the clock timing mismatch in
quadrature bandpass sampling based direct sampling receiver,
and showed that it introduces not only symbol timing offset
but also image interference. We analyzed the effect of clock
timing mismatch and found that the image rejection ratio
is quite sensitive to the mismatch. The tolerable range of
mismatch was given, then the compensation scheme and pilot-
aided and blind estimation method were proposed using an
approximation of the timing-shifted quadrature-phase signal.
The performance of the proposed method was evaluated by

Fig. 6. IRR versus length of g, SNR=30 dB, φ = −1/16fc.

the numerical simulations and its satisfactory image rejection
ratio and symbol error rate performance were demonstrated.
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