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Abstract: This paper proposes a new probabilistic measure 

of cascading failures of telecommunications networks. The 

key idea is that we use not availability, which is the 

conventional reliability measure, but the mean number of 

occurrences of serious cascading failures, where ‘serious’ 

means the impact of the cascading failure measured by the 

total traffic volume went below a specified value. 

We performed some numerical experiments and found 

some interesting facts. For example, if we use the same 

routers with the same MTBF, then the cascading failure rate 

becomes smaller than if we use different routers with 

different MTBFs while the average of the MTBFs of the 

routers are the same for both cases. 
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1.  Introduction 

Cascading failures are failures that result in wide-area 

damage of telecommunications networks and are caused by 

successive failures of elements triggered by only a small 

failure of one element. In 2003, Italy experienced cascading 

failures caused by the interaction of Internet systems and 

electrical power supply networks going down [1]. In the 

USA in 2009 and 2012, Google’s web mail services 

experienced cascading failures that occurred in a single 

network [2][3]. Because Japan and other countries are 

anxious about experiencing cascading failures in the near 

future, many researchers have studied how to protect users 

from them. Almost all their approaches are based on 

quantitatively analyzing the impact caused by cascading 

failures so that it can be minimized by designing 

appropriate telecommunications networks. To analyze the 

impact, Hara et al. [4] proposed a measure called the 

survival traffic rate, which is defined as the percentage of 

the total traffic volume surviving after the occurrence of a 

cascading failure. 

While this measure is very useful, it has the problem 

that it is deterministic and never considers the probability of 

a cascading failure occurring, even though this probability 

is necessary for designing telecommunications networks 

against such failures. 

Now, we propose an improved measure, so we can 

probabilistically analyze cascading failures. 

 

2.  Preparation 

First, we explain the mathematical, graph theoretic, and 

reliablility theoretic concepts and symbols used in this 

paper. 

         We used a graph consisting of nodes and links. The 

nodes are numbered 1, 2, …, n, and a link connects two 

nodes. If a link connects nodes i & j, i & j are called the end 

nodes of that link. 

We use G to represent the graph. V is the set of all 

nodes in G, and E is the set of all links in G. That is G = (V, 

E). An alternate sequence of nodes and links is called a path. 

If there is a path between two nodes, these nodes are 

connected. If any two nodes in G are connected, G is 

connected.  

A non-negative real number is assigned to any link. 

This number is the length of the link. The sum of the 

lengths of all the links in a path is the length of this path. If 

the length of a path is the minimum of all paths between 

two specified nodes i & j, then this path is called the 

shortest path between i & j or more briefly the shortest path.   

        For any two sets X & Y, X－Y = {x| xX, xY}. 

The MTBF (mean time between failures) is the mean 

time from the beginning of being repaired to the next 

failure. The MTTR (mean time to repair) is the mean time 

from the beginning of the failure to the failure being 

repaired. The availability is MTBF/(MTBF+MTTR) .   

 

 

 

 

 

 

 

 

Figure 1.  MTBF & MTTR. 

 

3.  Existing Research 

3. 1 Model for telecommunications networks 

A standard model for a telecommunications network [4] in 

the study of cascading failures is given as a graph satisfying 

the following condition. 

 

A non-negative real number D(i, j) (called a traffic demand) 

is assigned to any pair of nodes i & j, and the traffic volume 

corresponding to this assigned value is ensured between a 

node pair. 

 

For this model, we define the initial state as follows. 

 

Step 1.The shortest path h
i,j
 is selected as the traffic path 

between any pair of nodes i & j to ensure the traffic 

demand between this pair of nodes.  

Step 2. Let H(k)
 
be the set of all traffic paths going through 

node k.  f(k) is defined as below.  
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(f(k) means the total traffic volume going through 

node k.) 

Step 3. The node capacity ck is assigned to each node k by 

ck = d   f(k), where d is a non-negative constant 

value called the durability parameter. 

 

      A simple example of the initial state is shown in Figure 

2. 

      In this initial state, we assume that D(i, j) = 100 for 

every pair of nodes and the duration parameter is 1.1. 

Therefore, c1 = c2 = c5 = 440 and c3 = c4 = 660 for the initial 

state. 

 
Figure 2. Initial state.  

 

       A cascading failure is caused in the initial state due to 

the steps described below [4]. 

 

Mechanism of cascading failure 

Step 1. Let Z = {} and N be the initial state. A trigger 

failure is caused at one node of the initial state, and 

this node is put into Z.  

Step 2. All traffic paths going through the nodes included in 

Z are deleted from N. 

Step 3. All nodes in Z and all links connecting at least one 

node of Z are deleted from N. 

Step 4. If we find a pair of nodes i & j still connected in N, 

but its traffic path is lost, then we search for new 

shortest paths beween i & j and select one of them 

as the new traffic path ensuring the value of D(i, j). 

Step 5. f(k) is computed for any k {1, 2, … , n}－Z.  

Step 6. If we find f(k)   ck for any k {1, 2, … , n}－Z,  

then the mechanism of cascading failure is 

terminated; otherwise all nodes satisfying f(k) > ck 

are put into Z. 

Step 7. Go to Step 2. 

 

  
 

Figure 3. Example application of mechanism. 

      An example of an application of the above mechanism is 

shown in Figure 3. 

 

A detailed explanation of the example application 

shown in Figure 3 is shown  below. 

 

Step 1. Let Z = {} and N be as in Figure 2. A trigger 

failure occurs at node 4; therefore Z = {4}.  

Step 2. Six traffic paths go through node 4. Therefore, 

these six traffic paths are deleted fom N. 

Step 3. Node 4 and all links connecting to node 4 are 

deleted from N.  

Step 4.  Node 1 & 3 and 1 & 5 are still connected, but their 

traffic paths are lost. Therefore, new shortest paths 

are assigned to these pairs of nodes (double-headed 

arrows in the upper right figure in Figure 3).  

Step 5.   f(1) = f(5) = 300, and  f(2) = f(3) = 500.  

Step 6.  Node 2 is put into Z because f(2) = 500 > c2 = 440.  

(lower right hand figure in Figure 3.) 

Step 7.   Go to Step 2. 

Step 2’. Five traffic paths go through node 2. Therefore, 

these five traffic paths are deleted fom N. 

Step 3’. Node 2 and all links connecting to node 2 are 

deleted from N.  

Step 4’. We find the pair of nodes 3 & 5 that are still 

connected on N, and its traffic path is not lost. 

Step 5’.  f(1) = 0, and  f(3) = f(5) = 100.  

Step 6’.  f(1) = 0   c1 = 440, f(3) = 100   c3 = 660, and f(5) 

= 100   c5 = 440. Therefore, this mechanism is 

terminated. 

 

       The lower left figure in Figure 3 is obtained by 

performing the above steps. 

 

3. 2 Measure for impact of cascading failures 

       As a result of performing the mechanism of cascading 

failure, some pairs of nodes have traffic paths, and others 

do not. If we have a traffic path between node i & j, then it 

implies that traffic demand D(i, j) is ensured between them; 

otherwise D(i, j) is not ensured.  

We define Pa0 and Pa1 as below. 

 

       Pa0 = {(i, j) | pair of nodes in the initial state.} 

       Pa1 = {(i, j) | pair of nodes with a traffic path between 

nodes i & j after executing mechanism of a 

cascading failure} 

 

Hara et al. defined the survival traffic rate as below [4]. 
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  For the example application of the mechanism shown 

in Figure 3,  Pa0 = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), 

(2, 5), (3, 4), (3, 5), (4, 5)} and Pa1 = {(3, 5)}. Because we 

assume that D(i, j) = 100 for every pair of nodes, as 

described just before Figure 2, we obtain 
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Accordingly, for Figure 3, 
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This implies that the total traffic volume is reduced to 

10% by the cascading failure whose trigger failure is caused 

at node 4. 

 

3. 3 Problem of existing research 

       While the survival traffic rate is a very useful measure 

for evaluating the effectiveness of the countermeasures for 

cascading failures, we claim that this measure still has a 

problem because it does not consider the probabilities of 

cascading failures occurring. 

       Even when the impact of cascading failures measured 

by survival traffic rate is very serious, we do not need to be 

anxious about such cascading failures if the probability of 

occurrence is very low. However, when the impact of 

cascading failures is not serious, we need to be anxious 

about it if the probability of occurrence is not low. 

      While researchers in the traditional reliability 

engineering field  have emphasized that such a probabilistic 

approach is very important to design highly reliable 

telecommunications networks [6], all researchers studying 

cascading failures do not take into account such 

probablistic approaches [1][4].  

 

4. Proposal 

4.1 Cascading failure rate 

Now, we propose an improved measure, so we can 

probabilistically analyze cascading failures. The definition 

of this measure denoted by Cas() is as below.  

Cas() =
M

1
,  

where M = the mean time from the start of service to 

the first experience of cascading failure whose 

survival traffic rate goes below a threshold value 



A conceptual view of Cas() is shown in Figure 4. 

 
Figure 4. Conceptual view of cascading failure rate. 

The key point of this measure is that we use not availability 

as defined in Section 2, which is the conventional reliability 

measure, but the mean number of occurrences of serious 

cascading failures, where ‘serious’ means the survival 

traffic rate went below .occurrence is not low. 

 We call this improved measure the cascading failure 

rate. This measure is better than the availability-based one 

because the cascading failure rate can be estimated without 

repair time data (the availability-based one cannot do this 

because of the definition of availability given in Section 2). 

We emphasize that repair time data are very difficult to 

obtain in the case of cascading failures. Because cascading 

failures cause very serious situations, their repair times are 

different from commonly observed repair times.  

We emphasize that we can only compute Cas() from 

the initial state information, mechanism of cascading failure, 

and additional information about the MTBF of each node.   

 

4. 2 Computation method for cascading failure rate 

Due to the definition of Cas(), it is easy to see that 

the following steps compute the value of Cas(). 

 

Step 1.  Let Cas() = 0. 

Step 2. Repeat the following substeps for each r (r = 1, 2, 

…, n) 

    Substep 2-1. Start mechanism of cascading failure with 

trigger failure that occurs at node r. 

    Substep 2-2. Compute the survival traffic rate. 

    Substep 2-3. If the survival traffic rate <  then  

                              Cas() = Cas() + 1/MTBF of node r 

Step 3. Ouput Cas() 

 

For the case shown in Figure 2, the survival traffic rate 

= 0.6 when trigger failure occursat node 1, 2, or 5, and the 

survival traffic rate = 0.1 when trigger failure is caused at 

node 3 or 4. 

Therefore, if = 0.2 and the MTBF of each node is 

100000 hours, then Cas() = 0.00001 + 0.00001 = 0.00002 

(1/hours).    

 

 5.  Numerical experiments 

We implemented a software program to compute cascading 

failure rates of telecommunications networks and executed 

some numerical experiments. 

 

5.1 Target models 

The topology is shown in Figure 5 and has been provided 

by the Institure of Electoronics, Information and 

Communication Engineers[5]. The length of each link is 

determined by real map data of Japan.  

For this topology, traffic demands are assigned as 

below. 

 

If either i or j is 14, 16, 17, 18, 19, 23, 25, 26, 27, or 29, 

then D(i, j) equals 10000; otherwise it  equals 100. 

 

The above assumption means that we have traffic 

concentrations for big cities. 

        Furthermore, we assume the following two patterns of 

MTBF of nodes (hours). 

 

Survival  

traffic 

rate 

Elapsed time 



M 
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Pattern 1.  

The same value of 4.57   10
6
 is assigned for any node. 

Pattern 2. 

        The values of 5.81   10
6
, 4.57   10

6
, and 3.8110

6
 

are assigned to Areas A, B, and C, respectively, as shown in 

Figure 5. 

 
 

 

Figure 5. Topology. 

        

       We emphasize that the average of the MTBFs of the 

nodes is the same value in Pattern 1 & 2. These patterns 

mean that we use the same routers in all nodes or several 

different routers. 

 

5.2 Analysis results 

The analysis results for Pattern 1 are shown in Figure  6. 

 

 
 

Figure 6. Analysis Results for Pattern 1. 

 

The total computation time to obtain all data for Figure 

6 is 4 minutes and 20 seconds. 

        Due to the analysis results for Pattern 1, if we increase 

the duration parameter from 1 to 1.3, the cascading failure 

rate ( = 0.1) becomes almost zero. In this example, having 

only a small margin of capacity effectively prevents serious 

cascading failures. That is, by analyzing cascading failure 

rates, we can find effective countermeasures for cascading 

failures at low cost. 

The analysis results for both Pattern 1 & 2 with a 

duration parameter of 2.0 are shown in Figure 7. 

 

 

 
 

Figure 7. Analysis Results for Pattern 1 & 2. 

 

The total computation time to obtain all data for Figure 

7 is 12 seconds. 

The results shown in Figure 7 indicate that the 

cascading failure rate becomes small if we have different 

values of the MTBFs of nodes even though the average of 

the MTBFs of nodes is the same. Therefore, we can  

determine that we should use different types of routers to 

reduce the number of occurrences of cascading failures.   

 

6.  Conclusion 

This paper proposes a new measure of cascading 

failures of telecommunications networks. Previous 

measures do not consider the probabilities of occurrences of 

cascading failures. However, our measure considers such 

probabilities. The key idea is that we do not use the 

conventional availability-based measure because this needs 

repair time data, which is very difficult to obtain in the case 

of cascading failure. 

For future work, we need to analyze the effects of 

actual countermeasures for cascading failures from the 

viewpoint of cascading failure rates and further improve the 

measure of cascading failure.  
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