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Abstract: This paper proposes a new algorithm to solve the 

partitioning problem to realize high reliable 

telecommunications networks. The partitioning problem is 

to check whether a telecommunication network can be 

divided into two subnetworks such that we can ensure the 

independence of two paths by assigning these paths in 

different subnetworks. We already proposed an algorithm 

to solve this partitioning problem. However, this algorithm 

is problematic because its execution time on computer 

increases exponentially with the size of telecommunications 

networks. Now, this paper proposes a new higher speed 

algorithm to solve the partition problem. The basic idea of 

the proposed algorithm is transforming a special type of 

configuration called degree-3 delta to simplify the network 

topology.  
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1.  Introduction 

As effective way to achieve high reliability in 

telecommunications networks is to use “double homing”. 

This is achieved by having an edge router access two 

different core routes (a pair) so that communication 

continues even if one router in the pair fails. 

However, as pointed out by refs. [1][2], double 

homing is effective only if there are two independent routes 

between any two pairs of routers, but such independence is 

not always easy to ensure because telecommunications 

networks are large and complex. 

Our previous work proposed a simple approach to 

ensure such independence: partitioning the network into 

two subnetworks that do not share any equipment. That is, 

if two routes between two pairs of routers pass through 

completely different subnetworks, they do not have any 

common nodes or links and are thus independent[1][2]. 

The previous works [1][2] formulated this partitioning 

problem as a graph theoretical partitioning problem and 

proposed algorithms, for determining whether a network 

can be partitioned. Factoring algorithm is the fastest 

algorithm in previous works. (While some other researches 

[5]-[9] have addressed similar types of partitioning 

problems of graphs, we emphasize that they are quite 

different because, for example, those researchers [5]-[9] 

never considered double homing concepts.) 

 

2.  Preperation 

First, we explain the mathematical and graph theoretical 

concepts and symbols. 

The empty set is represented by. 

For both sets S1 and S2, S1 – S2 is defined as the set of 

elements of S1 not element of S2. That is, S1 – S2 ={x | x   

S1, x  S2}. 

A graph is a mathematical object consisting of nodes 

and links. Nodes are numbered 1, 2, … , N. A link connects 

two nodes. If a link connects node i and j, i and j are the end 

nodes of that link. If there is a link with end nodes i and j, i 

and j are considered to be directly connected by the link. If 

two nodes are directly connected by two links, these links 

are considered to be parallel links. If a node is the end node 

of d number of links, the degree of this node is d. If the 

degree of a node is d0, this node is considered to be a 

degree-d0 node. Two links directly connecting the same 

degree-2 node are considered to be series links. 

We use G to indicate a graph; V is the set of all nodes 

in G, and E is the set of all links in G. That is, G = (V, E). 

Gt= (Vt, Et) is a subgraph of G if Vt   V, Et   E, and 

the end nodes of every link of Et is included in Vt. A path is 

a sequence of alternating nodes and links. If there is a path 

between two nodes, the two nodes are connected. If any 

two nodes in G are connected, G is a connected graph.  is 

a subgraph of G having three nodes and three links such 

that each link directly connects to each pair of two nodes of 

. 

We define additional concept, ‘node-pair’, for this 

graph. If a subset of V consists of exactly two nodes, this 

subset is considered to be a node-pair. T(G) is the set of all 

node-pairs in G. We define T0 as a specified subset of T(G). 

Next, we explain the operation that is being used in 

the algorithm. 

 

Degree-1 reduction 

        If G has degree 1 node (a node not included in any 

node-pair of T0), it is removed, and the link directly 

connecting to this degree-1 node is removed. 

Parallel reduction 

If G has parallel links, one of them is removed. 

Series reduction 

If G has series links for which the end nodes of one 

link are i and j, the end nodes of another link are j and 

k, and j is not included in any node-pair of T0, those 

two links and j are removed. A link is then added that 

directly connects i and k. 

Degree-3 delta-star transformation  
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 If G has having three nodes i, j, & k, and the degree 

of node i is three, the link whose end nodes are j, k is 

removed.This is denoted by (3).) 

  

These reductions and transformation are illustrated in 

Figures 1, 2, 3 and 4. 

 

 

 

 

 

 

 

 

                           

Figure 1. Degree-1 reduction. 

 

 

 

 

      

Figure 2. Parallel reduction. 

 

 

 

 

                                 

 

Figure 3. Series reduction. 

 

 

 

 

 

 

 

 

Figure 4. Degree-3 delta-star transformation. 

 

Contract: A link in G is selected and removed; the two end 

nodes of this link are merged into one node. 

Delete:     A link in G is selected and removed. 

 

Examples of these operations are illustrated in Figure. 

5 and 6. 

 

 

 

 

 

 

                              Figure 5. Contract 

 

 

 

 

 

 

                              Figure 6. Delete 

 

In factoring, a link in G is selected and used to 

generate two graphs. One (graph G
+
) is generated by 

contracting this link, and the other (graph G
–
) is generated 

by deleting this link.  

Other graph theoretical concepts are due to [3]. 

 

3.  Existing Research 
3. 1 Structure of telecommunications networks 

In telecommunications networks, communication from 

one user to another is done in six basic steps: a) the first 

user accesses an edge router, b) this edge router accesses a 

core router, c) this core router accesses another core router, 

d) this router access is repeated, e) the final core router 

accesses an edge router, and f) this edge router accesses the 

second user. . 

In this process, steps a) and f) involve accessing a 

network, and steps b), c), d), and e) involve accessing a 

core network comprising core routers and links among 

them. Double homing is implemented in steps b) and e), in 

which an edge router can access two core routes (a pair) in 

step b), and the two core routers (a pair) can access the 

same edge router in step e), so traffic is not disrupted even 

if one router of the pair fails.. 

An example structure of a telecommunications 

networks is shown in Figure 7.  

 

 

 

 

 

 

 

Fig. 7. Example structure of telecommunications network. 

3. 2 Problem of double homing 

As mentioned above, double homing is effective only if 

there are two independent routes between any two pairs of 

routes, where ‘independent’ means the two routes do not 

share any equipment (cable, multiplexer, or router). This is 

because the failure of a shared piece of equipment will 

cause both routes to fail. 

As refs. [1][2] explained, such independence is 

difficult to ensure because a core network is typically very 

large and the number of routes is huge. 

However refs. [1][2] emphasized that we can solve the 

problem by partitioning a telecommunication network into 

two subnetworks that do not share any equipment. If two 

routes between two pairs of routers pass through different 

subnetworks, they do not have any common nodes or links 

and are thus independent. 

Now, the problem is reduced to effectively partitioning 

the telecommunication network. Refs. [1][2] already 

formulated this partitioning problem as a graph theoretical 

partitioning problem. 

Next subsection describes the formulation. 
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3. 3 Formulation of the problem 

We use graph G to represent telecommunication network. 

Links represent cables, and nodes represent multiplexers 

and routers. A node-pair represents a pair of routers used 

for double homing. 

Refs. [1][2] formulated the partitioning problem as 

follows. 

For a given G and T0, determine the existence of 

graphs G1 = (V1, E1) and G2 = (V2, E2) satisfying the four 

following conditions.  

 

Condition 1.  G1 and G2 are subgraphs of G. 

Condition 2.  V1
 V2 = E1

 E2 =  

Condition 3.  G1 and G2 are connected graphs 

Condition 4.  For any node-pair {i, j}T0, one of the 

following is true. 

a) i   V1 and j   V2 

b) j   V1 and i V2 

 

If G1 and G2 satisfying these conditions exist, G can be 

partitioned; otherwise, G cannot. 

An example of a partitionable graph is shown in Fig. 8. 

The white circles and solid lines indicate nodes and links in 

G1. The other circles and dotted lines indicate nodes and 

links in G2. 

 

 

 

 

 

 

 

 

 

Figure 8. Partitionable graph. 

 

3. 4 Existing algorithm for partitonalbe problem 

The fastest algorithm [2] in previous works proposed for 

solving the partitioning problem uses the following theorem.  

 

Theorem 1. 

If G is reduced to G’ by degree-1, series, or parallel 

reduction, 

(1) If G’ can be partitioned, G can be partitioned. 

(2) If G’ cannot be partitioned, G cannot be partitioned. 

 

Theorem 2. 

(1) If G can be partitioned, G
+
 or G

–
 can be partitioned. 

(2) If G cannot be partitioned, neither G
+
 nor G

–
 can be 

partitioned. 

 

Ref. [2] emphasized that we can solve the partitioning 

problem by factoring with reductions. 

First, we apply reductions to G and, if the partitioning 

problem is solved for this reduced graph G’, the 

partitioning problem for G is solved in accordance with 

Theorem 1. If the partitioning problem for G’ is difficult to 

solve, G’ is factored into G’
+ 

and G’
 –

. If the partitioning 

problem for G’
+ 

 and G’
 –
 is solved, the partitioning problem 

for G is solved in accordance with Theorem 2. These 

factorings with reductions are repeated until the graphs are 

sufficiently small so that the algorithm described in find-

all-solutions algorithm can easily solve the partitioning 

problem. 

Find-all-solutions algorithm is method to enumerate 

all solutions. 

This algorithm is the fastest algorithm among previous 

works. However, we still have a problem because its 

execution time on computer increases exponentially with 

the size of telecommunications networks. Therefore, much 

faster algorithm is requested. 

 

4. Proposed algorithm 

We propose a new improved algorithm to realize much 

faster execution time. This new algorithm is based on the 

idea of adding degree-3 delta-star transformation (see 

Section 2.) to the algorithm of ref. [2], while degree-3 delta-

star transformation have never been used in any previous 

works [1][2]. 

The following Theorem gives the base of our new 

algorithm. 

 

Theorem 3. 

         If G is reduced to G(3) by applying a degree-3 delta-

star transformation. 

(1) If G can be partitioned, G(3) can be partitioned. 

(2) If G cannot be partitioned, G(3) cannot be partitioned. 

 

This theorem is derived in Appendix. 

Now we can derive a new algorithm for solving the 

partitioning problem by adding the degree-3 delta-star 

transformation to the part of reductions in the factoring 

algorithm [2].  

 

 5.  Numerical examples 

We have implemented software to solve the partitioning 

problem by using our proposed algorithm. 

Numerical examples show that this algorithm is faster 

than pervious algorithm. For example, the execution time of 

the proposed algorithm for Fig. 9 is 25923 seconds to solve 

partition problem, while previous algorithm of [2] needs 

373698 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 9. An example model 
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6.  Conclusion 

This paper has proposed a new faster algorithm to solve the 

problem of partitioning a telecommunication network into 

two independent subnetworks.  

The key idea of our new algorithm is transforming a 

special type of configuration into another simpler 

configuration, where we call this transforming degree-3 

delta-star transformation. 

Future works are as follows. 

 

(1) Improve the speed of the algorithm much faster. 

(2) Apply the partitioning problem to real 

telecommunication networks  
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Appendix Proof for Theorem 3 

Theorem 3 is proved.  

 

Case1. It is easy to see that Theorem 3 is true when the 

number of the links of graph G is not more than 4. 

 

Case2. We assume that the number of the links of graph G 

is more than 4. 

Let G has (3). (See Section 2 as for (3).) It is true 

that G has another link never being included in (4), 

because G has more than four links. (We can assume that 

this new link is not one of a pair of the parallel links whose 

the other side link is included in (4). This is because, 

Theorem 1 guarantees that removing a link of a pair of 

parallel links never gives any effect to the result of 

partitioning problem.)  Let m be ‘the number of links – 4’. 

The following induction logic derives that Theorem 3 

is true for any m = 0, 1, … . 

 

(a) We assume m = 0. 

In this case, it is equivalent to case 1. Therefore, 

Theorem 3 is true. 

 

(b) We assume that if m = k then Theorem 3 is true. 

Now, we focus on m = k + 1. We can pick up a link 

never being included in (3). Let G
+
 be the graph obtained 

from G by contracting this link, and let G
-
 be the graph 

obtained from G by deleting this link. 

 

Step1. 

If G can be partitioned, G
+
 or G

–
 can be partitioned by 

Theorem 2. 

If           If G
+
 can be partitioned then G (3)

+
 (the graph obtained 

from G
+
 by applying delta-star transformation) can be 

partitioned; because the number of links of G
+
 is k and the 

induction assumption is assumed. 

Almost same logic derives that if G
–
 can be partitioned,   

G(3)
–
 (the graph obtained from G

–
 by applying the delta-

star transformation) can be partitioned.  

Therefore, if G can be partitioned then G(3)
+
 or G(3)

–
 

can be partitioned. By applying the contraposition of (2) of 

Theorem 2 to G(3)
+
 or G(3)

–
 can be partitioned’, G(3) can 

be partitioned. That is, (1) of Theorem 3 is true. 

 

Step 2. 

If G cannot be partitioned then G
+
 and G

–
 cannot be 

partitioned, because of (2) of Theorem 2. By the induction 

assumption, G(3)
+
 and G(3)

–
 cannot be partitioned. By 

applying the contraposition of (1) of Theorem 2, G(3) 

cannot be partitioned. That is, (2) of theorem 3 is true.  

 

From Step 1 and 2, Theorem 3 is true if m = k + 1. 

 

(c) From the logic of induction, Theorem 3 is true for any m. 
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