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Abstract: In this paper, a method for expanding the free-
dom of the circuit design concerned with a first-order passive
complex filter including no transformers is proposed. The
proposed frequency transformation is obtained by arranging
the conventional one for the complex filter using loose cou-
pling transformers. By giving appropriate specifications to
the conventional frequency transformation, we can exclude
transformers. As an example, a complex bandpass filter ob-
tained from a first-order prototype real lowpass filter is de-
signed. The proposed circuit is composed of terminating re-
sisters, capacitors and inductors only. The validity of the pro-
posed method is confirmed through computer simulation.

1. Introduction
Recently, many complex coefficient filters (complex fil-

ters) have been proposed in the field of analog signal
processing[1]-[6]. The complex filter as well as the real coef-
ficient filter (real filter) is important for the applications to the
orthogonal communication system, the low-IF radio system
and so on.

Especially, passive complex filters can be realized with-
out active components which limit their operating frequency.
However, many of them include transformers[3]-[5] equipped
with two or more separated windings. Its operating frequency
tends to become relatively low due to its parasitic capacitance.
In order to solve this problem, a method for designing passive
complex filter using inductors, capacitors and terminating re-
sisters only has been proposed [6]. It is true that this filter in-
cluding no transformers, but its upper passband edge is fixed
to be infinite. Therefore, the conventional filter [6] is a kind of
a complex highpass filter. In other words, a complex bandpass
filter including no transformers has not been proposed.

In this paper, we solve this problem by increasing its de-
sign parameters. The proposed method has adequate design
parameters to obtain complex bandpass characteristics. A de-
sign example and simulation results are shown.

2. Proposed method

2.1 Frequency transformation

Figure 1 shows the proposed frequency transformation. In
this figure, the frequency axis x of the real filter is converted
to that of the complex filter. This frequency transformation
is obtained by appropriately using the conventional one for
the complex filter using loose coupling transformers [3]. The
function f(ω) is defined as

x = f(ω) = − 1

aω
− 1

bω − xs
, (1)

Figure 1. Frequency transformation[3].

Table 1: Element transformation.

where a > 0, b > 0 and xs is a real constant. From Fig.1, the
following simultaneous equations can be obtained.

1 =
1

aω2
− 1

bω2 − xs
(2)

−1 =
1

aω1
− 1

bω1 − xs
(3)

From this frequency transformation, the inductor L included
in the normalized real filter gets transformed to

ZL(jx) = jxL =
1

jω a
L

+
1

jω b
L − j xs

L

. (4)

The admittance Yc of the capacitor C becomes

Yc(jx) = jxC =
1

jω a
C

+
1

jω b
C − j xs

C

. (5)
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Figure 2. Prototype real filter.

Figure 3. Prototype complex filter.

In these equations, j is an imaginary unit. Table 1 summarizes
the element transformations given by Eqs. (4) and (5). As a
result, the proposed circuit becomes a complex bandpass fil-
ter. From Eq. (1), it is found that the proposed transformation
has three parameters(a, b, xs).

In order to decide these parameters, it is necessary to pre-
pare three conditions. Because the proposed filter has a com-
plex bandpass response as shown in Fig.1, we have two con-
ditions related to passband edges. The other is a condition for
excluding the transformer described in Sect. 2.4.

Figure 2 shows a prototype real lowpass filter. Through
the proposed frequency transformation, the prototype lowpass
filter becomes the prototype complex filter shown in Fig.3.

2.2 Realization of imaginary resister

Figure 4 shows an imaginary resister. The relationship be-
tween v and i is given by

v = jRi . (6)

　 Decomposing voltage v and current i into their real and
imaginary signal paths given by

v = vr + jvi
i = ir + jii

}
, (7)

where subscripts r and i denote the real and the imaginary
signal paths, respectively. Substituting the above equations
into Eq. (6), we have

vr + jvi = −Rii + jRir . (8)

From the above equation, we have

vr = −Rii
vi = Rir

}
. (9)

We introduce the following v′i and i′i given by

v′i = R0ii

i′i =
1

R0
vi

 , (10)

Figure 4. Imaginary resister.

Figure 5. Ideal transformer.

Figure 6. Realization with an ideal transformer.

where R0 is a positive constant. From the above equation, we
have

ii =
1

R0
v′i

vi = R0i
′
i

 . (11)

Substituting this into Eq.(9) yields

(
vr
ir

)
=

−R

R0
0

0
−R0

R

(
v′i
−i′i

)
. (12)

This expresses a two-port circuit written in an F -matrix
form. This indicates an ideal transformer whose turn ratio is
−R : R0. Figure 5 shows the ideal transformer which sim-
ulates the imaginary resister shown in Fig.4. Equation (11)
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(a) Current source. (b) Voltage source.
Figure 7. Conversion a current source to a voltage source.

(a) Prototype circuit. (b) Equivalent circuit.

Figure 8. Separation of the terminating resister.

indicates that the relationship between voltage and current are
interchanged in the imaginary circuit. Therefore, the imagi-
nary circuit becomes a dual circuit of the real circuit. Conse-
quently, the circuit shown in Fig.3 can be equivalently real-
ized by the circuit shown in Fig.6.

In this circuit vir and vor are the input and the output sig-
nals of the real circuit, respectively, and vii and ioi represent
those of the imaginary circuit. Since the imaginary circuit is
dual of the real one, the input signal source of the imaginary
circuit becomes the current source vii/R0.

2.3 Arrangements

The current source vii/Ro with internal resister R2
0/Rs

in Fig.6 can be equivalently converted into a voltage source
viiR0/Rs with internal resister R2

o/Rs. This equivalent con-
version is shown in Fig.7.

Moreover, we can add terminating resisters to the output
side of the circuit as shown in Fig.6 without affecting its
frequency response. This equivalent conversion is shown in
Fig.8. According to Thevenin’s theorem, it is obvious that the
circuit Figs.6 and 9 are equivalent to each other.

2.4 Excluding the ideal transformer

The turn ratio of the ideal transformer included in Fig.9 is
given by the value of the imaginary resister. The turn ratio
of the ideal transformer becomes 1 : 1 when the value of the
imaginary resister is −j. In this case, we can exclude the ideal
transformer. Its condition is given by

xs = CR0 . (13)

The resulting circuit shown in Fig.10.

3. Design example
As a design example, a complex bandpass filter whose pass-
band edges are ω1 = 9.5 and ω2 = 10.5 rad/s is designed.

Figure 9. Equivalent circuit of Fig.6.

Figure 10. Proposed circuit.

We set the element values of the normalized real lowpass fil-
ter shown in Fig.2 at

Rs = 1
C = 1

}
. (14)

Usually, R0 = 1. Solving the simultaneous equations
given by Eqs. (2), (3) and (13), we have

a = 0.022089
b = 0.077308
xs = 1

 . (15)

Figure 11 shows the simulation results. In this figure, the
passband area of the conventional filter is on 9.5 rad/s -∞.
From this figure, it is confirmed that the proposed circuit has
a complex bandpass response. The image rejection ratio of
the proposed circuit is 4.4dB higher than conventional one
between 9.5-10.5 rad/s.
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Figure 11. Simulation result.

4. Conclusion

In this paper, a synthesis of a first-order passive complex
filter using no transformers has been proposed. From the sim-
ulation result, it is confirmed that the proposed circuit has the
complex bandpass response.

The further investigation is required to confirm the validity
of the proposed method through experiment.
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Appendix
A Solution of proposed frequency

transformation
We set the element values of the complex bandpass filter

shown in Fig.9 at
R0 = 1
C = 1

}
(16)

In order to exclude the ideal transformer, we obtain the fol-
lowing equation from Eq.(13).

xs = CR0 = 1 (17)

　 Solving the simultaneous equations given by Eqs.(2), (3)
and (17) for a and b, we have

a =
ω2
D ±

√
ω4
D + 8ω2ω2

GωD

4ω2ω2
G

b =
ω2
A ±

√
ω4
A − ω1ω2

GωA

ωAω2
G

ωG =
√
ω1ω2

ωA =
ω1 + ω2

2
ωD = ω2 − ω1



(18)

　 Also, solving Eq.(2),for b we have

b =
1

ω2(aω2 + 1)
. (19)

　 From Eq.(18), if ω2 > 0, ωD > 0 and ωG > 0, the follow-
ing condition is satisfied.

a =
ω2
D +

√
ω4
D + 8ω2ω2

GωD

4ω2ω2
G

> 0 (20)

In addition, the condition of ω2 > 0, ωD > 0 and ωG > 0 are
given by the following equation.

ω2 > ω1 > 0 (21)

　 From Eq.(19), if ω2 > 0 and a > 0, b has a positive so-
lution. Therefore, it can be concluded that both of a and b
become positive when the condition of inequality (21) is sat-
isfied.
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