
Implementation and Analysis of Win32 Native Distributed Compilation System -
WinDistcc

Kyongjin Jo1, Kwanghoon Choi2, Jongkook Kim1 and Seon Wook Kim1
1School of Electrical Engineering, Korea

1, 5-ka, Anam-dong, Sungbuk-ku, Seoul 136-701, Korea
2Mobile Handset R&D Center, LG Electronics

327-23, Gasan-dong, Gumchon-gu, Seoul 153-802, Korea
E-mail: 1{seon}@korea.ac.kr

Abstract: Many software vendors are suffering from heavy
compilation overload because the size of their software prod-
uct is getting bigger and bigger. One of the promising so-
lutions to reduce the compilation time is to use a distributed
compiler. It allows us to compile multiple files on several ma-
chines concurrently. However most of distributed compilers
can’t deliver ideal performance due to many undesired over-
heads such as communication overhead, lack of resources,
load imbalance, file dependence, and so on. In order to study
the detailed performance matrices, we developed the Win32
prototype of a distributed compiler based ondistcc (GNU
distributed compiler) [1], [2], calledWinDistcc. WinDistcc
contains additional features based ondistcc’s basic functions.
The compiler supports two kinds of compilation modes: a lo-
cal preprocessing or a remote preprocessing. We measured
the performances in both cases and identify reasons of per-
formance degradation in normal distributed compilers. Based
on the performance study, we could understand the design re-
quirement for ideal distributed compilers.

1. Introduction
In large-scale software projects such as software development
on mobile phones, the heavy compilation time is one of seri-
ous bottlenecks in terms of productivity. In order to resolve
the compilation problem, we developed the Win32 native dis-
tributed compilation system, calledWinDistccwhich is based
ondistcc(GNU distributed compiler) [1]. An original distrib-
uted compilation process consists of several steps such as lo-
cal preprocessing on a local server, sending the preprocessed
files from the local server to remotes, compilation of the sent
file on remotes, sending an object file to the local server from
remotes and linking objects and building an executable code
at the local server. The local server means a server computer
which has source files and a remote does the remote host com-
puter which is connected with a local server for distributed
compilation.

These processes work well in a light project which has
small amount of preprocessing jobs. However, if a project has
large amount of preprocessing jobs, then a local server suffer
from overhead of local preprocessing jobs and managing re-
mote machines. To avoid this problem,WinDistcccan support
a remote preprocessing that preprocesses the source file from
remote hosts. In order to support the remote preprocessing,
we made a group data structure by analyzing dependencies

This work has been supported by Global LG Track Program of LG Elec-
tronics.

between source files and header files. This structure provides
the dependence information between files that should be sent
to remote hosts for remote preprocessing. Through our ap-
proach we could reduce the compilation time and with a re-
mote preprocessing we could exploit more parallelism.

This paper consists of three parts: Section 2.explains an
architecture ofWinDistccanddistcc. Section 3.shows the per-
formance evaluation results, and Section 4.makes conclusion
of this paper.

2. WinDistcc

In order to developWinDistcc, we investigatedistccfirst, be-
cause it’s the parent ofWinDistcc. In this chapter, we’ll ex-
plain the architectures ofdistccandWinDistccboth. Based
on the knowledge, we’ll explain overall details ofWinDistcc
implementation issues.

2.1 Architecture of distcc

distcc is the representative open-source distribute compiler
made by GNU society [1], [2]. It consists of two parts, a
server and a remote host. The server manages overall dis-
tributed compilation jobs such as the remote host selection,
a preprocessing, a result collection and so on. The server
processes are invoked bymakeutility [3], [4] and are work-
ing during given compilation jobs. The remote host performs
compilation jobs which are requested by the server process.

The basic concept ofdistccwere described in Figure 1. It
uses only a local preprocessing scheme. The server process
receives compilation command frommakeutility and chooses
a non-busy remote host from the list of remote hosts. The
server connects with the remote host and performs pre-
processing jobs on the local server. After the preprocessing
job is done, the server sends the preprocessed file and the
compilation command to the remote host. The remote side
is waiting for the server’s requests and preprocessed files un-
til whole distributed compilation jobs completely finish. The
remote receives the preprocessed file and compilation com-
mand from the server. After that, the remote host side per-
forms compilation and sends a compiled code such as an ob-
ject file to the server. Since the dependence between source
files is required for preprocessing, it is the easiest way to per-
formance the preprocessing on the local server. However, the
preprocessing jobs can’t be processed in parallel (i.e. serial
execution is increased) so this scheme results in serious per-
formance degradation for distributed compilation.

The 23rd International Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC 2008)

401

Read

a host information file

Parse

an arguments

Preprocessing

Pick a host

Send an

argument

array and

source files

Send a

request

to open server

Retrieve

result

from servers

Receive a

request

and preprocessed

files

Send results to

distcc local host

Compile

Distcc Local

Host

Distccd

Remote Host

Figure 1.distcc’s basic operation.

2.2 Architecture of WinDistcc

WinDistccis based ondistcc, but more smart modules to ex-
ploit higher parallelism.WinDistccworks on a local server
and several remote hosts, as shown in Figure 2. Each remote
host has a very simple structure to consist of a network han-
dler, a thread handler and a compiler. A local server has the
following functionalities: a group creation module, a job dis-
tributer, a job scheduler and a network handler. Except the
group creation module, other modules are already available
in the originaldistcc.

Before launching distributed compilation process,WinDistcc
executesgcc [5], [6] first to get dependency information file.
The group creation module gets a.d file from the previous op-
eration. The module analyzes the contents the file and makes
group structures from it. Simple grouping scheme is depicted
in Figure 3. The job distributer considersMakefileand list of
remote hosts, and chooses the remote host who will perform
a compilation job. With group information andMakefile, the
job distributer sends compilation command and group associ-
ated files to chosen remote hosts. After the compilation job
is finished in remote hosts, each remote hosts sends an object
file to the local server.

2.3 Implementation ofWinDistcc

We performed three processes forWinDistccimplementation.
First, we migrated the Linux version ofdistccto Win32 native
version. In order to migrate the compiler to Win32 version,
we implemented a thread based job preprocessing system and
a winsock style communication system.

Second, we implemented grouping operation for the re-
mote preprocessing. The simplest way to extract dependency
information is parsingMakefile. However this approach can’t
give all file dependencies such as a source file and its whole
related header files. To resolve this problem, we extracted
dependency information from ’.d’ file fromgcc. With this
information, we made several groups which contain depen-
dency related files inside them.

WinDistcc Local Server

Group creation module

Group

structure

Job distributer

List & status

of the remote

hosts
Job scheduler

Chosen

remote host

.d file(gcc)

makefile

Remote host a

Remote host b

Remote host c

Remote host d

WinDistcc

remote hosts

Compilation

command

File group

Figure 2.WinDistccarchitecture.

� � � � � �

� � � � � � � � �

� � � � � �� � �� � 	 � � 	

 � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � �
 � � � � � � � � � � � � � � � � �

.d file example

target: a.o b.o c.o

a.o: a.c a.h

b.o: b.c a.h

c.o: c.c c.h

Grouping

.d file example

target: a.o b.o c.o

a.o: a.c a.h

b.o: b.c a.h

c.o: c.c c.h

Figure 3. Grouping scheme.

Third, we implemented group based distributed compila-
tion scheme. According to the group information,WinDistcc
sends all the files in one group to a specific remote host.
Since the remote host has all files required for the compila-
tion, the remote host doesn’t need further file transmission.
This concept is described in Figure 4. Differently from the
original distcc, the remote host inWinDistccperforms both
preprocessing and compilation job.

402

Group #1
Group #1

Group #1

.d file Group Creation Module

Source
&

headerfiles

Source
&

header files

S
o

u
rce

&
h

ead
er

files

Job scheduler

[Remote host + compilation

command + group 1]

[Remote host + compilation

command + group 2]

[Remote host + compilation

command + group 3]

O
b

je
ct

fi
le

O
b

je
ct

fi
le

O
b

je
ct

fi
le

Preprocessing

Compilation

Preprocessed

file

Preprocessing

Compilation

Preprocessed

file

Preprocessing

Compilation

Preprocessed

file

Remote host 1 Remote host 2 Remote host 2

Local

Server

Figure 4. Group operation ofWinDistcc.

3. Performance evaluation

3.1 Evaluation Method

In order to evaluate our distributed compiler framework,
WinDistcc, we used two kinds of evaluation methods: with
and without remote preprocessing support. Table 1 shows per-
formance evaluation environment. We picked three projects
to measure the performance, make-3.81, tcl 8.4.1 and tk 8.4.1.
These three projects are Linux based, so we used cygwin for
Win32 environment. Actually, we usedmakeutility for dis-
tributed compilation jobs so we can set the number of com-
pilation threads with a jobserver function inmakeutility. If
the number of compilation threads is more than one, then the
remote host will create multiple compilation threads simulta-
neously. In order to let the remote host busy during whole
distributed compilation process, we set the number of threads
as two. If we set more than two as the number of compila-
tion threads, then the remote host suffers from resource con-
tention.

3.2 Evaluation Result

Figure 5 shows average speedup ofWinDistccwith and with-
out (w/o) remote preprocessing support with respect to server-
only compilation. In case of w/o remote preprocessing, it
shows good performance improvement from 1 remote host

Table 1. Performance evaluation environment.
Project for compilation Make-3.81, tcl 8.0, tk 8.1
Machine specification
for compilation

CPU Intel Core(2) Duo
1.83GHz (for the
server), AMD Athlon
3200+(for the remote
hosts)

RAM DDR2 2GByte (for the
remote hosts) / 3GByte
(for the server)

Network 100MB LAN without
firewall

Operating System Cygwin on MicroSoft
Windows XP Profes-
sional

Number of compilation
thread

2 threads per remote
host

to 2 remote hosts, and the speedup is almost linear. How-
ever, with more than 3 remote hosts this architecture doesn’t
get scalable performance. The main reason of this behavior is
overhead about multiple preprocessing and remote managing
jobs at the local server. In case of with remote preprocessing

403

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Server 1

remote

host

2

remote

hosts

3

remote

hosts

3

remote

hosts

make-3.81

w/o remote preprocessing

with remote preprocessing

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Server 1 remote

host

2 remote

hosts

3 remote

hosts

3 remote

hosts

tcl-8.4.1

w/o remote preprocessing

with remote preprocessing

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Server 1 remote

host

2 remote

hosts

3 remote

hosts

3 remote

hosts

tk-8.4.1

w/o remote preprocessing

with remote preprocessing

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Server 1 remote

host

2 remote

hosts

3 remote

hosts

3 remote

hosts

Average

w/o remote preprocessing

with remote preprocessing

Figure 5. Speedup ofWinDistccwith or w/o a remote pre-
processing support, normalized server = 1.

0

50

100

150

200

250

300

350

w/o remote

preprocessing

with remote

preprocessing

msec

Communication time

communication time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Server 1

remote

host

2

remote

hosts

3

remote

hosts

3

remote

hosts

sec

Overhead of preprocessing and

remote management

w/o a remote preprocessing

with a remote preprocessing

Figure 6. Execution time analysis.

support, its base performance isn’t better than the local pre-
processing version. Its inferior base performance is caused by
communication overhead due to sending a code and its associ-
ated all headers. Nevertheless, remote preprocessing support
version shows scalable performance because the server has a
surplus energy to manage the distributed compilation jobs.

In Figure 5, there are evidences of a remote preprocessing
versionWinDistcc’s worse base performance and more scal-
able performance than w/o a remote preprocessing version

WinDistcc. In terms of the communication time, a remote pre-
processing versionWinDistccconsumes 10 times more time
than w/o remote preprocessing version, and this time consum-
ing behavior is the reason of bad base performance. However,
in terms of the overall overhead, a remote preprocessing ver-
sionWinDistccis free from the overhead about preprocessing
and a remote management. On the contrary, as the number of
remote hosts increases, the overall overhead also increases in
w/o remote preprocessing version. In w/o remote preprocess-
ing method, we can distribute compilation jobs to each remote
host, but heavy local preprocessing jobs on a local server pre-
vents remotes from connecting with the local server whenever
remotes finish their compilation jobs.

4. Conclusion
In this research, we developed a remote preprocessing sup-
port Win32 native distributed compiler. By providing the re-
mote preprocessing support we could avoid overhead at a lo-
cal server caused by local preprocessing and remote manage-
ment. The performance analysis showed that the remote pre-
processing approach provides performance scalability. With
these results, we can know the reasons of un-ideal perfor-
mance of the existing distributed compilers. According to the
result of this research, we can make more enhanced distrib-
uted compiler in near future. Moreover, we developed GUI
for WinDistccfor providing convenient compilation environ-
ment to users.

References

[1] http://distcc.samba.org
[2] T.A. Jones, “distcc, a fast free distributed compiler,”

linux.conf.au, December 2003.
[3] Becker, B. ”A GNU Make Tutorial”,

http://www.undergrad.math.uwaterloo.ca/ cs241/make
/tutorial/index.html, January 1996.

[4] Stallman, R & McGrath Roland. ”GNU Make”,
http://csugrad.cs.vt.edu/manuals/make/maketoc.html,
December 1993.

[5] http://gcc.gnu.org
[6] R. Stallman. ”The GNU C compiler”. Free Software

Foundation, 1991.

404

