
Parallel Particle Swarm Optimization on Many-Integrated-Cores Platforms

Yasuyuki Miyazato1, Takeshi Tengan2, Andrea Veronica Porco3 and Morikazu Nakamura4
1,3,4Department of Information Engineering, University of the Ryukyus

1 Senbaru, Nishihara, Okinawa 903-0213, Japan
2Faculty of International Studies, Meio University,
1220-1 Biimata, Nago, Okinawa 905-8585, Japan

E-mail : 2tengant@meio-u.ac.jp, 4morikazu@ie.u-ryukyu.ac.jp

Abstract: This paper presents parallel particle swarm op-
timization (PSO) on Many-Integrated-Cores (MIC) architec-
ture platforms and investigate how to utilize many cores of
MIC platforms efficiently. We consider in our parallel PSO
strategies for utilizing many cores from the viewpoints of
depth and width of searching. Experimental results for a
benchmark problem show the relation between searching per-
formance and search strategies in the parallel PSO. We con-
firm that the balance between the width and depth in search
strategies is essential for efficient searching.

Keywords—Particle Swarm Optimization; PSO; Parallel Optimization;
Many Integrated Cores

1. Introduction
Particle Swarm Optimization (PSO), a promising algo-

rithm for optimization problems, is inspired by social behav-
ior of a group of living things such as fishes, birds, and in-
sects. PSO is known as one of the population-based meta-
heuristics such as Genetic Algorithm (GA), Ant Colony Opti-
mization (ACO). Many researchers reported that PSO is effi-
cient as a heuristic algorithm and has broad application areas.

Many Integrated Cores (MIC) architectures are a new plat-
form for high-performance computing[1]. For example, Intel
Xeon Phi Coprocessor, a MIC platform, is getting much atten-
tion as an attractive parallel processing platform for dramatic
performance gains of highly parallel processing application
by its many cores and threads[2].

Parallelization of optimization algorithms and efficient uti-
lization of massively parallel processing many-core hardware
are essential for solving large-scale optimization problems.
However, it is not straightforward to utilize many cores in ef-
fective searching, that is, larger parallelism may lead to being
the worse quality of solutions.

This paper presents a parallel discrete binary PSO on In-
tel Xeon Phi coprocessor for large-scale optimization prob-
lems. Our parallel scheme utilizes many cores for efficient
collaborative searching in PSO. In [6], we reported the first
result of our research. In this paper, we improve the algo-
rithm and perform a more detailed experimental evaluation of
our method by solving well-known benchmark optimization
problems, NK-landscape.

There are many research results for parallel PSOs; fine-
grained PSO on GPU [7], parallel PSO on PC clusters [8], [9],
and so on. However, they did not utilize many-cores platforms
we consider in this paper. We need to design a parallel PSO
been suitable for the MIC platforms since characteristics of
platforms may give significant effects on its performance of

the parallel program.

2. Preliminaries
This section explains briefly Intel Xeon Phi Coprocessor

and NK Landscapes.

2.1 Intel Xeon Phi Coprocessor

Intel Xeon Phi is many-core coprocessor based on Intel
Many Integrated Core architecture (Intel MIC). For example,
Intel Xeon Phi Coprocessor 5110P has 60 cores, and a core
is possible to process 4 threads simultaneously; therefore, the
number of simultaneous possible threads is 240. Compared
to GPU platforms such as NVIDIA Tesla, Intel Xeon Phi has
the advantage of being able to utilize existing x86 software
and CPU-like programmability. Parallel program models on
GPU platforms are based on SIMT (Single Instruction Multi-
ple Threads), while the Intel MIC architectures are available
for MIMD (Multiple Instructions and Multiple Data). That is,
more flexible parallel programs can be designed on the archi-
tectures.

2.2 NK Landscapes

NK landscapes (NK model) introduced by Stuart Kauff-
man [3] as a tunable mathematical model. The model is based
on a chromosome, the parameter N and K represent the num-
ber of genes and the number of alleles, respectively.

0 1 … 1 … 0 1

Length : N

Epistasis : K

Figure 1. Chromosome in NK model

Consequently, the size and complexity of solution space to
be generated can be adjusted by its parameters N and K.

The fitness value of a chromosome derived from the aver-
age of fitness component fi determined by its own gene xi

and K alleles zij :

f(x) =
1

N

N∑
i=1

fi(xi, zi1, · · · , ziK) (1)

xi ∈ {0, 1}, ∀i,
zij ∈ {0, 1}, ∀i, j

The 31st International Technical Conference on Circuits/Systems,
 Computers and Communications (ITC-CSCC 2016)

391

3. Discrete Binary PSO

A feasible solution of optimization problems corresponds
to a particle in PSO. The position (coordinate) of a particle
expresses directly a solution vector. PSO is a population-
based, that is, groups of particles, called as swarms, search
good quality of solutions by moving in the space [4].

The position and the velocity of a particle are updated by
the equation, where it considers the best position the particle
have ever visited, xpbest, and the best position the entire PSO
has ever visited, xgbest.

vi(k + 1) = w · vi(k)
+ C1 · r1 · (xpbest(k)− xi(k))

+ C2 · r2 · (xgbest(k)− xi(k)) (2)
xi(k + 1) = xi(k) + vi(k + 1), (3)

where w is inertia weight, C1 and C2 are acceleration coeffi-
cients, r1 and r2 are uniform random numbers on [0, 1].

To avoid premature convergence in searching, we use com-
monly the best position a particle in a sub-swarm visited in-
stead of the best one in the entire swarm. Moreover, the
neighborhood-based updating is also efficient, in which xgbest

means the best position a particle in the neighborhood visited
so far. The neighborhood relation can be denoted as network
topology, such as ring, line, tree, and complete graph. Figure
2 shows some examples of swarm topologies in PSO.

(a) Complete Graph (b) Ring

(c) Tree (d) Hyper Cube

Figure 2. Example of typical neighborhood topologies used
in PSO

Since particles in PSO traverse in the real-valued space,
we need to convert the real-valued vectors into binary integers
for evaluating the objective function. In our algorithm we use
sigmoid functions S(xi):

xi =

{
1 if(rand() < S(xi))
0 otherwise

(4)

S(Xi) =
1

(1 + e−xi)
(5)

4. Parallel Discrete Binary PSO
In this paper, we parallelize the discrete binary PSO to take

advantage of the MIC architecture. PSO possesses natural
parallelism since it is a population-based algorithm. In our
parallel discrete binary PSO, each thread in the shared mem-
ory programming model performs the role of a particle in a
swarm. We assign a network topology which shows commu-
nication links between particles for the neighborhood-based
updating in PSO.

This parallelizing is straightforward, and it seems to be
suitable for the MIC architecture. More particles lead to wider
width searching since particles and threads are the one-to-one
correspondence. However, wider width searching does not al-
ways result in more efficient searching. Note that resources,
processor cores and computation time, are not unlimited. We
should always require efficient searching, that is, we need to
get a better solution in a small number of evaluations in opti-
mization.

In addition to width, depth should be an essential point
for efficient searching on the MIC architecture. That is, we
assign many cores to not only the width but also the depth
of searching. Figure 3 explains the difference between width
and depth, where two threads run two independent particles
in the left side, while two threads at the right side perform
different depth of a single particle.

Algorithm 1 represents our parallel PSO. The number of
particles is the same as the number of threads. All the parti-
cle execute in parallel the forall statements and communicate
with their neighbors to update the velocity.

Algorithm 1 Parallel PSO
1: for all particle i do
2: Initialize xi with a uniformly distributed random vec-

tor
3: Initialize xpbest

i and xgbest
i by xi

4: Initialize vi with a uniformly distributed random vec-
tor

5: end for
6: for all particle i do
7: repeat
8: Update the velocity vi by equation (2)
9: Update the position xi by equation (3)
10: if f(xi) > f(xpbest

i) then
11: xpbest

i ⇐ xi

12: end if
13: Update xgbest

i by communicating with the negihbors
14: until The termination criterion is met
15: end for

392

Current Position

Move to Next Position

Current Position

Compare Multi Position

Move to Better One

Width

Depth

2 threads =

 2 particles × 1 point search

2 threads =

 1 particle × 2 points search

Figure 3. Parallel Discrete Binary PSO (Multi Point Search)

5. Experimental Evaluation

The parallel algorithm was coded using C language with
the pthread library. We performed experiments for evaluation
where we ran our parallel programs to solve NK landscape
instances with fixed K = 5, varying N from 20 to 60, and the
number of threads from 2 to 256. For each case of N and K,
we averaged the obtained solutions from 100 times runs since
we generated 5 different instances for each case and solved
20 times for each instance.

Firstly, we compared solution quality for four topologies,
complete graph, ring, tree, hypercube, by varying problem
size, and the number of iterations. Figures 4, 5, and 6 de-
pict curves of the ratio of the solution quality compared to
the quality obtained by a single particle’s PSO for the number
of iterations, 10,000, 2,500, and 625, respectively. Note that
the total number of evaluations of the objective function is the
same for all the cases, 80,000 times. It means that we ran our
program for three cases of the parallel PSO; 10,000 iterations
of 8 particles, 2,500 iterations of 32 particles, and 625 itera-
tions of 128 particles, and for the case; 80,000 iterations of a
single particle.

In the results shown in the figures, we observed that (1) the
parallel PSOs performed better compared to the single parti-
cle searching, (2) complete graph communication led to pre-
mature convergence more than the other topologies, (3) the
solution quality went down when N increased, this became
more evident when the number of iterations were smaller, and
complete graph was received less influence from this.

Figure 7 shows results for depth =1 and Fig. 8 for depth=2.
The horizontal axis represents the number of threads and the
vertical one the difference of the fitness value from the serial
PSO. That is, the horizontal line at the fitness value 0 shows
the solution quality of the serial PSO. Therefore, larger values
than 0 mean better solution quality than the serial PSO.

We observe in the results that (1) the parallelization con-
tributed to solution quality generally, (2) larger number of
threads lead to worse quality of solutions than the serial PSO
in case of larger problems, and (3) searching with depth 2 is
better than one with depth 1 for larger problems.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 20 25 30 35 40 45 50 55 60

d
i
f
f
e
r
e
n
c
e

o
f

f
i
t
n
e
s
s

N

complete_graph :
ring :
tree :

hyper_cube :

Figure 4. Solution Quality Comparison vs. N for Topologies
(K = 5, Iterations = 10,000)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 20 25 30 35 40 45 50 55 60

d
i
f
f
e
r
e
n
c
e

o
f

f
i
t
n
e
s
s

N

complete_graph :
ring :
tree :

hyper_cube :

Figure 5. Solution Quality Comparison vs. N for Topologies
(K = 5, Iterations = 2,500)

393

-2

-1.5

-1

-0.5

 0

 0.5

 1

 20 25 30 35 40 45 50 55 60

d
i
f
f
e
r
e
n
c
e

o
f

f
i
t
n
e
s
s

N

complete_graph :
ring :
tree :

hyper_cube :

Figure 6. Solution Quality Comparison vs. N for Topologies
(K = 5, Iterations = 625)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1 2 4 8 16 32 64 128 256

D
i
f
f
e
r
e
n
c
e

o
f

F
i
t
n
e
s
s

Number of Threads

ring : N=20 K=5
ring : N=30 K=5
ring : N=40 K=5
ring : N=50 K=5
ring : N=60 K=5

Figure 7. Parallel Discrete Binary PSO (Depth 1) with Ring

6. Concluding Remarks
In this paper, we presented parallel particle swarm opti-

mization (PSO) on Many-Integrated-Cores (MIC) architec-
ture platforms. To investigate how to utilize many cores of
MIC platforms efficiently, we observed the relation between
the searching performance and the width and depth of search-
ing in the parallel PSO. We confirmed that the balance be-
tween the width and depth in search strategies is essential for
efficient searching.

As future works, we will improve our algorithm so that it
could search deeply more efficiently with multiple cores and
will perform more detailed experimental evaluation.

References

[1] Alexander Heinecke, Michael Klemm and Hans-Joachim
Bungartz, “From GPGPU to Many-Core: Nvidia Fermi
and Intel Many Integrated Core Architecture”, Comput-
ing in Science & Engineering, vol.14, no.2, pp.78-83,
2012.

[2] Erik Saule, Ümit V. Çatalyürek, “An Early Evaluation of

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 1 2 4 8 16 32 64 128 256

D
i
f
f
e
r
e
n
c
e

o
f

F
i
t
n
e
s
s

Number of Threads

ring : N=20 K=5
ring : N=30 K=5
ring : N=40 K=5
ring : N=50 K=5
ring : N=60 K=5

Figure 8. Parallel Discrete Binary PSO (Depth 2) with Ring

the Scalability of Graph Algorithms on the Intel MIC Ar-
chitecture”, Proc. of 2012 IEEE 26th International Paral-
lel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), pp.1629-1639, 2012.

[3] Stuart A. Kauffman, Edward D. Weinberger “The NK
Model of Rugged Fitness Landscapes And Its Applica-
tion to Maturation of the Immune Response”, Journal of
Theoretical Biology, Vol. 141, Issue 2, pp.211-245, 1989.

[4] James Kennedy, Russell Eberhart “Particle Swarm Opti-
mization”, Encyclopedia of Machine Learning, pp.760-
766, 2010.

[5] James Kennedy, Russell Eberhart “A Discrete Binary Ver-
sion of the Particle Swarm Algorithm”, IEEE Interna-
tional Conference On Systems, Man, And Cybernetics,
Vol. 5 pp.4104-4108, 1997.

[6] Yasuyuki Miyazato, Morikazu Nakamura, “Strategy
Comparison in Particle Swarm Optimization on Many-
Integrated-Cores Platforms” Proceedings of the Interna-
tional Conference on Intelligent Informatics and Biomed-
ical Sciences, 2015.

[7] Jianming Li, Danling Wan, Zhongxian Chi, and Xiangpei
Hu, “An Efficient Fine-Grained Parallel Particle Swarm
Optimization Method based on GPU-Acceleration”, In-
ternational Journal of Innovative Computing, Information
and Control, vol. 3, 6(B), pp.1707-1714, 2007.

[8] Jong-Yul Kim, Hee-Myung Jeong, Hwa-Seok Lee, and
June-Ho Park, “PC Cluster based Parallel PSO Algorithm
for Optimal Power Flow”, Proc. of International Confer-
ence on Intelligent Systems Applications to Power Sys-
tems, pp. 1-6, 2007.

[9] Jong Yul Kima, Kyeong Jun Munb, Hyung Su Kimc, June
Ho Park, “Optimal Power System Operation using Paral-
lel Processing System and PSO algorithm”, International
Journal of Electrical Power & Energy Systems, vol.33,
no.8, pp.1457-1461, 2011.

394

